La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Analisi della complessità degli algoritmi

Presentazioni simili


Presentazione sul tema: "Analisi della complessità degli algoritmi"— Transcript della presentazione:

1 Analisi della complessità degli algoritmi
A. Ferrari

2 Complessità computazionale
Obiettivo principale: Confrontare algoritmi corretti che risolvono lo stesso problema, allo scopo di scegliere quello migliore in relazione a uno o più parametri di valutazione.

3 Valutazione con un parametro
Se si ha a disposizione un solo parametro per valutare un algoritmo, per esempio il tempo d’esecuzione, è semplice la scelta: il più veloce. Ogni altra caratteristica non viene considerata.

4 Valutazione con più parametri
Nel caso di due parametri normalmente si considera il tempo. numero di passi (istruzioni) che occorrono per produrre il risultato finale. Passi e non secondi o millisecondi perché il tempo varia al variare delle potenzialità del calcolatore. lo spazio occupazione di memoria

5 Durata delle istruzioni
Le istruzioni non hanno tutte lo stesso tempo di esecuzione. Il tempo di esecuzione di un algoritmo è una somma pesata delle istruzioni: Ttotale=(i0*t0*n0)+(i1*t1*n1)+…+(im*tm*nm) ij è l’istruzione, tj è il costo dell’istruzione, il tempo di esecuzione nj è il numero di volte che viene eseguita.

6 Efficienza L’approssimazione di una funzione con una funzione asintotica è molto utile per semplificare i calcoli La notazione asintotica di una funzione descrive il comportamento in modo semplificato, ignorando dettagli della formula. Esempio: per valori sufficientemente alti di x il comportamento della funzione f(x) = x2 – 3x + 1 è approssimabile con la funzione f(x) = x2.

7 Misura dell’efficienza
Per un algoritmo con un input di dimensione n, possiamo definirne l’efficienza dicendo che “l’algoritmo per calcolare il risultato finale impiega al più f(n) passi” “l’algoritmo ha complessità f(n)”.

8 Terminologia (1) O (O grande) equivale al simbolo <=.
Corrisponde a “al più come”. “la complessità dell’algoritmo è O(f(n))” equivale a “il tempo d’esecuzione dell’algoritmo è <= a f(n)”. o (o piccolo) equivale al simbolo <. “la complessità dell’algoritmo è o(f(n))” equivale a “il tempo d’esecuzione dell’algoritmo è strettamente < a f(n)”. Θ (teta) corrispondente al simbolo =. “la complessità dell’algoritmo è Θ(f(n))” equivale a “il tempo d’esecuzione dell’algoritmo è = a f(n)”

9 Terminologia (2) Ω (omega grande) equivale al simbolo >=.
“la complessità dell’algoritmo è Ω(f(n))” equivale a dire “il tempo d’esecuzione dell’algoritmo è >= a f(n)”. ω (omega piccolo) equivale al simbolo >. “la complessità dell’algoritmo è ω(f(n))” equivale a dire“il tempo d’esecuzione dell’algoritmo è strettamente > di f(n)”

10 Complessità computazionale
La complessità computazionale di un algoritmo è la quantità di tempo necessaria per produrre il risultato finale. La complessità si esprime sotto forma di una funzione matematica che mette in relazione il tempo di esecuzione di un algoritmo con la dimensione dei dati di input. Il caso peggiore per un algoritmo è il caso in cui questo, per generare il risultato, impiega più tempo.

11 Complessità In molti casi la complessità è legata al tipo o al numero dei dati di input Ad esempio la ricerca di un valore in un vettore ordinato dipende dalla dimensione del vettore La complessità può dipendere anche dalla disposizione e dal tipo di dati Sempre nell’algoritmo di ricerca in un vettore ordinato avremo il caso: Ottimo Pessimo Medio

12 Tipi di complessità lineare logaritmica quadratica esponenziale
fattoriale

13 Lineare l’algoritmo ha complessità O(n) Esempio:
algoritmo di ricerca sequenziale di un elemento in un array

14 Logaritmica Esempio ricerca dicotomica in un array
La ricerca dicotomica ha complessità O(log2(n))

15 Quadratica Un esempio è l’algoritmo di ordinamento bubblesort eseguito su un array di elementi l’algoritmo ha complessità O(n2)

16 Esponenziale l’algoritmo della Torre di Hanoi ha complessità Ω(2n),
La Torre di Hanoi è un rompicapo matematico composto da tre paletti e un certo numero di dischi di grandezza decrescente, che possono essere infilati in uno qualsiasi dei paletti. Il gioco inizia con tutti i dischi incolonnati su un paletto in ordine decrescente, in modo da formare un cono. Lo scopo è portare tutti dischi sull’ultimo paletto, potendo spostare solo un disco alla volta e potendo mettere un disco solo su uno più grande, mai su uno più piccolo

17 Torre di Hanoi

18 Fattoriale E’ quella che cresce più velocemente rispetto a tutte le precedenti. Esempio: algoritmo che calcola tutti gli anagrammi di una parola di n lettere distinte. la complessità di un tale algoritmo è Θ(n!)

19 logaritmica < lineare < quadratica < esponenziale < fattoriale

20 Confronto


Scaricare ppt "Analisi della complessità degli algoritmi"

Presentazioni simili


Annunci Google