Scaricare la presentazione
La presentazione è in caricamento. Aspetta per favore
1
FIBONACCI 1
2
Realizzato da ISIS “Dante Alighieri”, Gorizia
Insegnanti Marina Altran, Giuliano De Biasio, Emanuela Fabris
3
OPERE DI FIBONACCI - Liber abaci - De practica geometriae
- Liber quadratorum - Il flos
5
LIBER ABACI Pubblicato la prima volta nel 1202 e rivisto nel Fondamentale per lo sviluppo della matematica europeo-occidentale, contenendo conoscenze matematico-algebriche.
6
Liber abbaci, pubblicato nel 1202 (rivisto e ampliato nel 1228) in seguito al ritorno di Fibonacci in Italia, fu dedicato a Scotus. Il libro si basava sull'aritmetica e sull'algebra, che Fibonacci aveva appreso durante i suoi viaggi. Il libro, che fu largamente utilizzato e imitato, introdusse, in Europa, il sistema di cifre decimali Indo-arabico e l'uso dei numeri arabi. Certamente, molti dei problemi che Fibonacci considera nel Liber abbaci erano simili a quelli che apparivano nelle fonti arabe. La seconda parte è dedicata alle radici quadrate e cubiche ed a problemi di teoria dei numeri.
7
La seconda parte del Liber abbaci contiene un'ampia raccolta dei problemi rivolti ai mercanti. Essi si riferiscono al prezzo dei prodotti, e insegnano come calcolare il profitto negli affari, come convertire il denaro nelle varie monete in uso negli stati mediterranei, e altri problemi ancora di origine cinese. Un problema, nella terza parte del Liber abbaci, portò all'introduzione dei numeri di Fibonacci e della sequenza di Fibonacci, per i quali è ricordato ancora oggi: Un certo uomo mette una coppia di conigli in un posto circondato su tutti i lati da un muro. Quante coppie di conigli possono essere prodotte da quella coppia in un anno, se si suppone che ogni mese ogni coppia generi una nuova coppia, che dal secondo mese in avanti diventa produttiva?
8
La sequenza che ne risulta è 1,1,2,3,5,8,13,21,34,55,… (Fibonacci omise il primo termine nel Liber abbaci). Questa sequenza, nella quale ogni numero è la somma dei due numeri che lo precedono, si dimostrò estremamente importante ed è presente in molte e differenti aree della matematica e della scienza. In questa terza sezione, vengono posti molti altri problemi, inclusi alcuni di questi tipo, e molti altri ancora: Un ragno sale molti piedi su un muro ogni giorno e torna indietro un numero stabilito di piedi ogni notte, quanti giorni ci impiega a scalare il muro? Un cane da caccia, la cui velocità aumenta in modo aritmetico, insegue una lepre, la cui velocità aumenta anche in modo aritmetico, quanto sono arrivati lontano prima che il cane da caccia abbia potuto prendere la lepre?
9
Fibonacci tratta i numeri come la radice di 10 nella quarta sezione, sia con le approssimazioni razionali, sia con le costruzioni geometriche. Nel 1228, Fibonacci produsse una seconda edizione del Liber abbaci, con un'introduzione, tipica di molte seconde edizioni di libri, che afferma che: …nuovo materiale è stato aggiunto [al libro], dal quale quello superfluo è stato rimosso…
10
DE PRACTICA GEOMETRIAE
Applica il nuovo sistema aritmetico per la risoluzione di problemi geometrici: un trattato di geometria e trigonometria.
11
Un altro dei libri di Fibonacci è il Practica geometriae, scritto nel 1220 e dedicato a Dominicus Hispanus. Esso contiene un'ampia raccolta di problemi geometrici, distribuiti in otto capitoli, unitamente a teoremi basati su Gli Elementi e Sulle divisioni di Euclide. In aggiunta ai teoremi geometrici con precise dimostrazioni, il libro include informazioni pratiche per i controllori, incluso un capitolo su come calcolare l'altezza di oggetti elevati, usando i triangoli simili. L'ultimo capitolo presenta ciò che Fibonacci chiama sottigliezze geometriche: Tra quelli, incluse il calcolo dei lati di un pentagono e di un decagono dal diametro di circonferenze circoscritte e inscritte, è nominato il calcolo inverso,come anche quello dei lati dalle superfici …per completare la sezione sui triangoli equilateri, un rettangolo e un quadrato sono inscritti in un triangolo e i loro lati sono calcolati algebricamente…
12
LIBER QUADRATORUM Brillante lavoro sulle equazioni indeterminate di 2° grado, con forte presenza della tradizione culturale araba.
13
Liber quadratorum, scritto nel 1225, è la parte del lavoro di Fibonacci più impressionante. Il nome del libro significa il libro dei quadrati ed è un libro sulla teoria dei numeri che, tra le altre cose, esamina i metodi per trovare le terne pitagoriche. Fibonacci, per primo, notò che i numeri quadrati potevano essere costruiti come somme di numeri dispari, descrivendo, in linea essenziale, un procedimento induttivo e usando la formula n2+(2n+1)=(n+1)2. Fibonacci scrive: Ho pensato all'origine di tutti i numeri quadrati e ho scoperto che essi derivano dal regolare aumento dei numeri dispari. L'1 è un quadrato e da esso è prodotto il primo quadrato, chiamato 1; aggiungendo 3 a questo, si ottiene il secondo quadrato, 4, la cui radice è 2; se a questa somma viene aggiunto un terzo numero dispari, cioè 5, verrà prodotto il terzo quadrato, cioè 9, la cui radice è 3; per cui la sequenza e le serie dei numeri quadrati derivano sempre da addizioni regolari di numeri dispari.
14
Per costruire le terne pitagoriche, Fibonacci procedette come segue:
Così, quando volevo trovare due quadrati perfetti, la cui somma producesse un quadrato perfetto, prendevo ogni quadrato perfetto dispari come uno dei due quadrati perfetti e trovavo l'altro quadrato perfetto attraverso la somma di tutti i numeri dispari dall'1 fino al quadrato perfetto dispari che avevo scelto precedentemente e che veniva escluso. Per esempio, io prendevo 9 come uno dei due quadrati perfetti menzionati; il quadrato rimanente poteva essere ottenuto attraverso la somma di tutti i numeri dispari sotto il 9, cioè 1, 3, 5, 7, la cui somma è 16, un quadrato perfetto, che quando è sommato al 9, dà 25, un quadrato perfetto.
15
Fibonacci, inoltre, dimostrò molti risultati interessanti sulla teoria dei numeri, come:
Non c'è x, y tale che x2+ y2 e x2-y2 siano entrambi quadrati e x4-y4 non può essere un quadrato perfetto. Egli definì il concetto di congruum, un numero della forma ab(a+b)(a-b), se a+b è pari, e quattro volte questo, se a+b è dispari. Fibonacci dimostrò come un congruum dovesse essere divisibile per 24 e che se x, c sono tali che x2+c e x2-c siano entrambi quadrati, allora c'è un congruum. Egli inoltre dimostrò che un congruum non è un quadrato perfetto.
16
IL FLOS In questo lavoro diede un’accurata approssimazione della radice di: x³+2x²+10x=20.
17
Durante il soggiorno di Federico II a Pisa nel 1225, l’illustre matematico, introdotto a corte dal Maestro Giovanni da Palermo (matematico della corte di Federico II), ricevette le più festose accoglienze da parte di tutta la Magna Curia. Nell’occasione, il Maestro Giovanni gli sottopose alcuni problemi risolvibili con equazioni quadrate e cubiche e le cui soluzioni furono riportate nel Flos. Nel libro tratta inoltre di problemi indeterminati, ripresi da Diofanto e di problemi determinati, come quelli di Euclide, dei Cinesi e degli Arabi. L’Imperatore svevo lesse e dimostrò di comprendere i testi di Fibonacci; al punto che gli sottopose una serie di quesiti, avendo come risposta alcuni interessanti corollari intorno alla teoria delle frazioni.
18
Problema dei conigli Immaginiamo di chiudere in un recinto una coppia di conigli (maschio e femmina) e supponiamo che ogni coppia produca ogni mese (a partire dal secondo mese) una nuova coppia (maschio e femmina). Quanti conigli si troveranno nel recinto dopo un anno, supposto che, nel frattempo, nessun coniglio muoia?
19
Risoluzione I totali delle coppie di conigli presenti alla fine di ogni mese formano la seguente successione di numeri: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144… in cui (osservò Fibonacci) ogni termine è la somma dei due precedenti. Dunque, dopo un anno, ci saranno 233 coppie di conigli. Alla fine dell’Ottocento, il matematico francese Edouard Lucas rese nota la successione in un suo lavoro di matematica ricreativa.
20
LA SUCCESSIONE DI FIBONACCI
Dal punto di vista matematico
21
Successione di Fibonacci
La successione di Fibonacci è una successione di numeri interi definita per ricorrenza, a partire dalla coppia 1, 1: a0=1 a1=1 an=an-1+an-2
22
Rapporti degli elementi contigui
1/1 = 1 2/1 = 1+1/1 = 2 3/2 = 1+1/(1+1) = 1.5 5/3 = 1+1/[1+1/(1+1)] = … 8/5 = 1+1/{1+1/[1+1/(1+1)]} = 1.6 13/8 = ……… = 1.625
23
Il rapporto aureo dei numeri di Fibonacci
Osservando la tabella alla pagina precedente, si nota che i rapporti fra i numeri consecutivi sono sempre uno minore e l’altro maggiore del numero aureo. Una caratteristica importante del numero aureo è che esso non è trascendente, come lo sono invece i numeri ed e.
24
Considerazioni Analizzando la successione dei rapporti (Fn+1)/Fn si nota che i termini di indici dispari assumono valori crescenti che si avvicinano per difetto a , cui peraltro si approssimano per eccesso i valori decrescenti dei termini di indice pari.
25
Derivazione da una frazione continua
26
Derivazione da radici nidificate
27
Alcune proprietà curiose della successione di Fibonacci
PARTICOLARITA` Alcune proprietà curiose della successione di Fibonacci
28
Due termini consecutivi sono primi tra loro
Esempi: MCD (3;5) = 1 MCD (5;8) = 1 MCD (34;55) = 1 MCD (55;89) = 1
29
La somma di numeri alterni della sequenza è uguale al numero successivo all’ultimo considerato.
Esempi: =144 =2584
30
La somma dei primi n numeri consecutivi più 1 è il numero che segue di due posti l’ultimo numero considerato Esempi: (1+1+2)+1=5 ( )+1=34
31
Ogni due numeri esiste uno divisibile per 2, ogni tre uno divisibile per 3,ogni quattro uno divisibile per 5; ogni n uno che o è primo, oppure è divisibile per lo stesso primo. Esempi: 1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,...
32
Il MCD tra due numeri di Fibonacci è un numero della sequenza la cui posizione è data dal MCD degli indici. Esempi: MCD (F6;F9) = FMCD(6;9) MCD (8;34) = F3 = 2
33
Un numero di Fibonacci elevato al quadrato è uguale al prodotto di quello che lo precede con quello che lo segue ±1. Esempi: 33
34
La somma di dieci numeri consecutivi è sempre divisibile per 11
Esempi: = 143 = 605 34
35
Le applicazioni pratiche della sequenza di Fibonacci
36
I numeri di Fibonacci hanno una vasta gamma di applicazione; oltre che in matematica, anche in altre aree, quali Fisica, Scienze, Informatica, Architettura, Economia, Musica, …
37
Informatica: I numeri di Fibonacci sono utilizzati anche nel software di molti computer. In particolare nei processori Pentium Intel la sequenza di Fibonacci e le sue proprietà sono usate per velocizzare le operazioni di calcolo.
38
Economia: Un’applicazione moderna dei numeri di Fibonacci si può riscontrare presso la borsa azionistica di Milano. Prendendo spunto da Fibonacci, Ralph Elson Elliot elaborò una precisa teoria di previsione dei mercati finanziari con la quale in tempi recenti sono stati anticipati alcuni rialzi e crolli di borsa.
39
Arte e Architettura: Da alcuni studi risulta che forse furono i Greci i primi utilizzatori del rapporto aureo: In un’anfora Greca il diametro maggiore è proporzionale al diametro del collo come 1:0,618 Il listello dell’anfora, all’altezza dei manici, divide l’altezza totale dell’anfora in una proporzione aurea pari al rapporto tra la fascia decorata a figure e la parte superiore dell’anfora Il rapporto tra lunghezza e larghezza nelle architetture di alcuni templi era 1:0,618 e il timpano era un triangolo isoscele con angolo al vertice di 180° 39
40
La sezione aurea in architettura
Si trova: Nel Partenone sull’Acropoli di Atene ( 440/430 a.C. – Fidia, Ictino e Callicrate) Nel tempio di Atena di Paestum (510 – 500 a. C.) Nell’Arco di trionfo di Costantino a Roma ( III d.C.) Nel Castel del Monte ad Andria in Puglia ( ) Nel Castello di Ruggiero II° di Aversa (1135) Nella Certosa di Pavia Nella cattedrale di Friburgo Nella cattedrale di Amiens (XII-XIII secolo) Nella grande piramide di Cheope Nella piramide di Teotiuacan in Messico Nella Chiesa dei Santi Pietro e Marcellino di Seligensdadt Nella Chiesa di Chiaravalle della Colomba Nella Chiesa di “S. Caterina” di Galatina (timpano del portale) Nella “S. Maria della Scala” di Noci (fastigio e campanile a vela) Nella Chiesa di “S. Domenico” di Taranto (portale) Nella Chiesa di “Ognissanti” di Valenzano in Puglia (la pianta, gli arconi) Nel Monastero di Santa Croce di Fonte Avellana (XI-XII secolo) Nel Palazzo Ducale di Venezia Nella facciata del Palazzo dell’ONU a New York
41
Nella cattedrale di Friburgo è riprodotta la successione di Fibonacci nei rapporti delle altezze.
42
La sezione aurea in pittura
Si trova: Nell’acquarello “Camposanto di S. Jans” presso Neurenber di Albrecht Durer Nell’opera “Scuola serale” di Gerard Dou Nell’opera “I sindaci della corporazione della luna” di Rembrandt Nell’opera ”Il sonno del Bambino Gesù” di Bernardino Luini Nell’opera “La parade du cirq” del pittore Georges-Pierre Seurat Nell’opera “La Venere” di Botticelli ( ) Nell’opera “Gioconda” di Leonardo da Vinci Nell’opera “L’Ultima cena” di Leonardo da Vinci Nell’opera “L’uomo di Vitruvio” di Leonardo da Vinci Nell’opera “San Girolamo” di Leonardo da Vinci (1483) Nell’opera “Broadway Bolgie Woogie “ di Pierre Mondrian ( ) Nell’opera “Composition with Grid 1“ di Pierre Mondrian (1919)
43
Verifichiamo il comportamento della successione mediante Excel e poi dimostriamo……..
46
NUMERI BONACCIONI IL MAGO DEI NUMERI
Nel libro “Il mago dei numeri” lo scrittore tedesco Hans Magnus Enzensberger presenta varie proprietà dei numeri di Fibonacci chiamandoli NUMERI BONACCIONI
47
I numeri “Bonaccioni” via software
Le prossime diapositive mostreranno i tabulati in linguaggio Pascal della sequenza di Fibonacci. Per raggiungere questi risultati sono stati utilizzati tutti e tre i tipi di cicli disponibili all’interno del programma di compilazione. For… to… Repeat… until… While… do… Si possono anche utilizzare procedure per raggiungere il medesimo risultato.
48
Program Fibonacci; Uses crt; Var i, n:Integer; Var i0, i1, s:Real; Begin Clrscr; i0:=0; i1:=1; Writeln ('Calcolo dei numeri della successione di Fibonacci.'); Write ('Quante cifre della successione si devono visualizzare?'); Readln (n); Writeln; s:=0; Writeln ('Numero 1: 1'); For i:=2 to n Do Begin s:=i0+i1; i0:=i1; i1:=s; Writeln ('Numero ', i,': ',s:10:0); End; Readln; End.
49
Program Fibonacci; Uses crt; Var Nfibon, Aprec, Asucc, i, k:Integer; Begin Clrscr; Aprec:=0; Asucc:=1; i:=0; Write ('Dammi il posto della successione di Fibonacci a cui ti vuoi fermare. '); Read (k); Readln; Writeln; Writeln ('1'); Repeat Nfibon:=Aprec+Asucc; Writeln (Nfibon); Aprec:=Asucc; Asucc:=Nfibon; i:=i+1 Until i=k; End.
50
Program Fibonacci; Uses crt; Var n:integer; Procedure fb (n:integer); Var i, n1, n2, temp:integer; Begin n1:=0; n2:=1; i:=0; While i<n Do Begin Writeln (n2); temp:=n2; n2:=n2+n1; n1:=temp; i:=i+1; End; Clrscr; Write ('Quanti numeri? '); Readln (n); Writeln; fb (n); Readln; End.
51
THE FIBONACCI QUARTERLY
La rivista The Fibonacci Quarterly viene normalmente pubblicata quattro volte all’anno: febbraio, maggio, agosto, novembre. La principale funzione del giornale è quella di essere un punto di riferimento per gli appassionati della successione di Fibonacci mettendo in luce risultati nuovi, proposte di ricerca, problemi stimolanti e nuove dimostrazioni per vecchi enunciati.
52
The Fibonacci Quarterly cerca articoli che siano comprensibili e stimolanti per i suoi lettori, la maggior parte dei quali sono professori universitari o studenti. I suoi articoli sono vivaci, con una buona argomentazione e con nuove idee che sviluppano entusiasmo per l’argomento. Illustrazioni e grafici sono saggiamente utilizzati per chiarire gli spunti presenti all’interno del testo. Vengono largamente incoraggiate le domande da parte dei lettori. Il giornale contiene due sezioni: una per i problemi elementari, l’altra per i problemi di livello superiore. Le soluzioni si possono trovare sul giornale, circa un anno dopo la formulazione dei problemi, assieme ai nomi delle persone che l’hanno risolto in maniera corretta. La miglior soluzione per ogni problema viene pubblicata sul giornale.
53
La fillotassi
54
Sequenza di Fibonacci e botanica
La Fillotassi è la branca della botanica che studia la regolarità con cui foglie e fiori sono distribuiti nello spazio Fu introdotta dal naturalista svizzero Charles Bonnet nel 1706 Sono interessati anche i petali e le gemme dei fiori
55
Alcuni esempi Nei tigli le foglie crescono su due lati opposti che corrispondono a un mezzo giro attorno al ramo. Nei meli e negli albicocchi le foglie si dispongono su 2/5 di giro
56
Nei peri le foglie si dispongono a 3/5 di giro, come nei salici piangenti
Nel 1837 due botanici collegarono questi rapporti grazie ai numeri di Fibonacci
57
Il girasole I semi del girasole si dispongono secondo due spirali logaritmiche, una di senso orario, una di senso antiorario. Il numero delle spirali nei due sensi può essere di 34 e 55, di 89 e 44, 144 e 293, tutti numeri di Fibonacci
58
Altri esempi in natura della sequenza di Fibonacci sono:
I parasticchi dell’ ananas I parasticchi delle pigne ( 8, 13) Hanno inoltre forma di spirale logaritmica: Conchiglie dei fossili del Nautilus Conchiglie dei molluschi viventi
59
Albero genealogico del maschio dell’ape o fuco
L’albero genealogico del fuco forma una successione di Fibonacci : 1,1,2,3,5,8… Infatti il fuco ha un genitore (la madre), due nonni (i genitori della madre), tre bisnonni (la madre del nonno e i genitori della nonna), cinque bisnonni (due per ciascuna bisnonna e la madre del bisnonno) e così via. Questo perché le uova delle api operaie danno origine a un fuco senza bisogno di fecondazione.
60
Studi sulla fillotassi nell’architettura di Gaudì.
Nella figura a fianco possiamo osservare lo studio compiuto da Gaudì sulla fillotassi, ossia sulla disposizione delle foglie, evidenziando la presenza dei numeri di Fibonacci. Gaudì ispirandosi alla natura applicò tale principio anche all’architettura. Foto scattata dalla classe 5E in visita al museo della Sagrada Familia (Barcellona)
62
Quanti conigli ci sono dopo 3 anni?
63
Saranno coppie… a meno che qualcuno non se li sia già mangiati con la polenta!
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.