Scaricare la presentazione
La presentazione è in caricamento. Aspetta per favore
1
per Laurea Specialistica e Dottorandi in ricerca
Open Lesson Corso di Statistica per Laurea Specialistica e Dottorandi in ricerca Dimensionamento degli esperimenti Marco Acutis & Roberto Confalonieri
2
L’impostazione degli esperimenti
Come va gestito un esperimento ? Quante ripetizioni occorrono ? Come dimensionare l’unità sperimentale ? Quale schema sperimentale adottare ? Gestire la variabilità spaziale Stretto rapporto tra le risposte a queste domande, nessun punto è affrontabile singolarmete
3
Criteri generali di gestione di un esperimento
Finalizzazione L’esperimento deve rispondere a necessità specifiche esattamente definite. Si deve sapere la ragione per ogni dato che si raccoglie Se dei dati si raccolgono “per prassi” occorre essere consci della ragione della prassi. Occorre un equilibrio tra i costi e i risultati ottenibili. L’esperimento inizia a tavolino !
4
…A Tavolino Quali differenze tra trattamenti consideriamo “rilevanti” per la nostra indagine ? Con che precisione vogliamo stimare un parametro ? (es coefficiente angolare di una retta) Con che precisione vogliamo stimare una Y incognita data una X ? + Stima della variabilità non controllata Abbiamo gli elementi per calcolare il n. di repliche
5
…Dal tavolino al campo Avere per ogni unità sperimentale un numero di individui (massa campione) sufficienti. Avere un’estensione spaziale dell’esperimento ridotta per ridurre le disomogeneità e non sommare fattori accidentali agli effetti dei trattamenti che stiamo facendo.
6
…Criterio per il dimensionamento dell’unità sperimentale
?
7
Un po’ di letteratura su dimensioni del campione
8
Prove nazionali varietali (Istituto Sperimentale per la Cerealicoltura (S. Angelo Lodigiano)
...è uno standard? Per quanto riguarda la resa granellare: tutta la parcella esclusi i bordi (1.2 x 5 m circa) Per quanto riguarda biomassa aerea, ecc: m lineari per due ripetizioni (CV = 25%)
9
Per la biomassa aerea suggerisce 20 piante per parcella
Gomez, 1972 “Techniques for field experiment with rice: layout, sampling, sources of error” ...è uno standard? In base a numerosi set di dati sperimentali trova delle dimensioni del campione (numero di piante) diverse a seconda della variabile che si vuole misurare. Questo perché i metodi per misurare le diverse variabili hanno diversa accuratezza. Per la biomassa aerea suggerisce 20 piante per parcella
10
Determinazione della biomassa aerea
Esempi da letteratura riguardanti metodi alternativi per la determinazione delle dimensioni del campione Wolkowski et al., 1988 Determinazione della biomassa aerea Raccoglie tutte le piante su una fila e ne pesa 1, 5, 10, 15, 20, 25, tutte (estrazione random) Calcola il coefficiente di variazione Guarda quando il CV è più basso (CV più basso = 14%)
11
La varianza a volte è correlata con la media (non c’è omoscedasticità)
Esempi da letteratura riguardanti metodi alternativi per la determinazione delle dimensioni del campione Tirol Padre et al., 1988 metodo analogo (basato sul CV (CV più basso = 12%)) in prova riguardante attività enzimatica La varianza a volte è correlata con la media (non c’è omoscedasticità) meglio lavorare su media e deviazione standard separate che sul CV!!!
12
Esempi da letteratura riguardanti metodi alternativi per la determinazione delle dimensioni del campione Yonezawa, 1985 Numero di piante da raccogliere per caratterizzazione genotipica Considera tutte le attività necessarie per giungere al dato finale e lo sforzo richiesto in ogni attività ed elabora matematicamente il tutto Conclude che: 1. campioni di sole 10 piante per ogni località o popolazione sono sufficienti 2. è più importante analizzare un largo numero di località o popolazioni Queste conclusioni potrebbero essere estese a prove parcellari considerando le repliche in campo come località => meglio campione “piccolo” per ogni replica ma tante repliche?
13
Un approccio grafico derivato dal jackknife per la determinazione delle dimensioni del campione
14
Premessa 1. Spesso le caratteristiche della popolazione (μ e σ) sono sconosciute (variano da situazione a situazione) è impossibile conoscere a priori l’errore che può essere ritenuto accettabile (può essere più o meno grande a seconda del particolare campo sperimentale in esame e della sua storia). In questi casi è meglio analizzare la variazione relativa dell’errore dovuto al campionamento al crescere delle dimensioni del campione all’interno del campo in esame piuttosto che basarsi su criteri assoluti per l’accettazione o meno di un certo errore.
15
Inoltre 2. Con un numero limitato di osservazioni a disposizione (cosa che si verifica spesso nel caso di metodi lunghi o costosi) può essere un azzardo valutare la normalità (requisito per l’applicazione dei metodi classici per la determinazione delle dimensioni del campione) 3. I metodi classici non prendono in considerazione lo sforzo necessario per ottenere il dato
16
I metodi di ricampionamento
I metodi di ricampionamento si sono molto diffusi a partire dagli anni 60. Concettualmente si basano sui metodi Monte Carlo ma si basano sull’uso ripetuto dell’unico campione disponibile. Molto importanti sono il bootstrap e il jackknife
17
Il visual jackknife N: numero unità campionarie k: numero di unità campionarie appartenenti ad un gruppo : numero di campioni virtuali (combinazioni senza ripetizione) di N-k elementi generati eliminando volte k valori :numero totale di campioni virtuali generati
18
Il visual jackknife Calcolare, per ogni campione generato di N-k unità campionarie, la media e la deviazione standard Disporre il tutto su due grafici che hanno: in ascissa i valori di N-k (con k da N-2 a 1; ovvero con (N-k) da 2 a (N-1) in ordinata la media e la deviazione standard
19
Il visual jackknife
20
Il visual jackknife
21
Se il campione è piccolo => non generare campioni virtuali è cosa pericolosa
Singolo campione 250 campioni generati 140 cm (7 gruppi da 20cm)
22
..In campo Effetto bordo Uniformità del trattamento
Attorno all’appezzamento Entro ogni parcella Uniformità del trattamento I trattamenti comuni all’intero appezzamento sperimentale spesso non sono uniformi Lavorazione del terreno semina Concimazioni Diserbi Trattamenti fitosanitari …….
23
Come ottenere una stima variabilità non controllata
Il presupposto è che non siamo i primi a fare un esperimento con il materiale e nelle condizioni operative che ci interessano Quindi esistono altri esperimenti +/- analoghi Allora una stima della variabilità non controllata è ottenibile dalla bibliografia Che ovviamente avrete letto con la massima attenzione possibile (un ricercatore che non legge e studia NON è un ricercatore) Un ricercatore che non studia è come un muratore che non usa il cemento: fa anche una casa, ma che cade al primo colpo di vento
24
Come ottenere una stima variabilità non controllata
Obbiettivo è ottenere deviazione standard e media La media generale è sempre riportata o facilmente ottenibile Il coefficiente di variazione è riportato in molte prove. Si può ottenere la standard deviation da: Valore della MDS Da anova e contrasti dai confronti multipli (es dal Test di Duncan)
25
Come ottenere la deviazione standard dalla MDS
In genere:
26
Come ottenere la deviazione standard dall’ANOVA (o dai contrasti)
Solo se si conosce il P(F) si può fare il calcolo esatto. Se il livello di significatività è espresso come + e ++ si può solo fare un calcolo approssimato, non sempre utile
27
Come ottenere la deviazione standard dall’ANOVA (o dai contrasti)
Occorre conoscere dell’esperimento da cui vogliamo ottenere l’informazione: Il numero di trattamenti a confronto Il numero di ripetizioni Il valore della media di ogni trattamento Il P(F) o il P(t) nel caso di contrasti Oppure il valore di F, o quello di t nel caso di contrasti Lo schema sperimentale adottato (randomizzazione completa, blocco randomizzato ecc) Non importa se l’esperimento è fattoriale
28
Come ottenere la deviazione standard dall’ANOVA (o dai contrasti)
Un esempio 6 trattamenti a confronto 4 ripetizioni per trattamento Schema a randomizzazione completa P(F)=0.021 Le medie: m1=60; m2=65; m3=70; m4=80; m5=81; m6=84 Ora andiamo all’esempio in excel
29
Come ottenere la deviazione standard dal test di Duncan
Un complicatissimo calcolo approssimato, non sempre utile. Una ragione in più per limitare i confronti post factum quando effettivamente sono da usarsi Non ritengo di spendere 1 ora per farlo qui
30
Le tavole di Pearson e Hartley
Nel caso dell’ANOVA, è possibile dimensionare i singoli gruppi in base a: potenza assegnata al test F differenza minima che si vuole mettere in evidenza Per il calcolo della potenza occorre calcolare il grado di falsità dell’ipotesi nulla: Dove: s2= QM(e) (in esperimenti comparabili o preliminari) p è il numero di gruppi δ0 è la varianza delle medie che dipende dalla differenza minima che si vuole evidenziare n è il n di trattamenti
31
Le tavole di Pearson e Hartley
32
Come usare l’abaco dal Dagnelie
Lo facciamo in pratica con carta penna e righello….
33
Come usare l’abaco dal Dagnelie
34
Usare le utility di Russel Lenth
Link locale
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.