La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

L’ Equilibrio chimico aA +bB cC + dD

Presentazioni simili


Presentazione sul tema: "L’ Equilibrio chimico aA +bB cC + dD"— Transcript della presentazione:

1 L’ Equilibrio chimico aA +bB cC + dD
Per un sistema chimico all’equilibrio, il rapporto fra il prodotto delle concentrazioni molari dei prodotti di reazione e il prodotto delle concentrazioni molari dei reagenti, ciascuna concentrazione essendo elevata a una potenza pari al coefficiente stechiometrico con la specie compare nella reazione, è COSTANTE A TEMPERATURA COSTANTE aA +bB cC + dD

2 Le concentrazioni SONO QUELLE DELLE SPECIE ALL’EQUILIBRIO!
L’ Equilibrio chimico ATTENZIONE Le concentrazioni SONO QUELLE DELLE SPECIE ALL’EQUILIBRIO! aA +bB cC + dD

3 L’ Equilibrio chimico 2NO2 N2O4 N2 +3H2 2NH3

4 Equilibrio in fase gassosa
Gli esempi fino a qui discussi riguardano sistemi in fase gassosa. Tutte le specie chimiche che definiscono un equilibrio chimico devono trovarsi nella stessa fase

5 Equilibrio in fase gassosa
CaCO3 CaO+ CO2 solido solido gas

6 Grado di dissociazione
Rapporto tra le moli della sostanza che si è dissociata all’equilibrio e le moli della sostanza presenti all’inizio della reazione 2HI H2+ I2

7 2) Calcolare la composizione all’equilibrio della miscela che si ottiene quando HI è posto in un recipiente in concentrazione 2.1 mM e scaldato a 490°C. A questa T, la Kc della reazione 2HI  H2 + I2 è Kc = [H2][I2]/ [HI]2 Iniziale Finale [HI] 2.1 x x 10-3 – 2x [H2] 0 x [I2] 0 x Kc = x2/ (2.1 x 10-3 –2x)2 x = 0.24 x 10-3

8 Il principio di Le Chatelier-Braun
Sia data una miscela di reazione all’equilibrio. I parametri che determinano la condizione di equilibrio sono T, P e le concentrazioni delle varie specie. Quando si cambia uno di questi parametri, il sistema evolverà per raggiungere un nuovo stato di equilibrio che si oppone alla modifica apportata.

9 Effetto della pressione
PCl5(g)  PCl3(g) + Cl2(g) Se si aumenta P, la miscela di equilibrio cambia composizione nel senso di diminuire il numero totale di molecole allo stato gassoso presenti nel recipiente. Per questa reazione quindi l’equilibrio si sposterebbe a sinistra. Non c’è effetto della P se non c’è variazione nel numero di molecole durante la reazione.

10 Aggiunta di un reagente
aA +bB cC + dD Kc = [C]c[D]d/[A]a[B]b Se si aumenta la concentrazione di un reagente, La reazione procederà verso destra. Effetto opposto se si introduce un prodotto nella miscela di reazione.

11 Aggiunta di un reagente
N2 +O2 2NO Kc = [NO]2/[N2][O2] Eq: 0,65-0,65-0,21 Aggiungo 2,00 di N2 2,

12 Variazione di volume N2 +3H2 2NH3 Kc = [NH3]2/[N2][H2]3 [ ]= n/V
Kc = [(nNH3) 2/ nN2 (nH2) 3]V2 Aumentando il volume, la reazione si sposta verso il maggiore numero di molecole

13 Effetto della temperatura
Aumento di T sposta l’equilibrio nella direzione che corrisponde alla reazione endotermica. Es. N2 + 3 H2  2NH3 DH° = -92 kJ mol-1 La reazione è esotermica. Un aumento di T favorisce la decomposizione di NH3 nei suoi prodotti.

14 Aspetti quantitativi N2 + 3 H2  2NH3 N2 + O2  2NO
La costante di equilibrio puo’ variare in modo sostanziale il funzione della temperatura N2 + 3 H2  2NH3 Kc=108 a 25 °C Kc=40 a 400 °C, N2 + O2  2NO Kc=10-30 a 25 °C, Kc=10-1 a 2000 °C

15 Equilibrio in fase liquida
ACIDI E BASI

16 Autoprotolisi di H2O Kw = [ H3O+ ] [OH- ]= 10-14 H2O H+ + OH- [ H+ ]
Keq = = 1,8x10-16 [ H2O ] [ H2O ]=55 M Kw = [ H3O+ ] [OH- ]= 10-14

17 [ ]+ Un chiarimento.. O H H H H2O H+ + OH- 2H2O H3O+ + OH- [ H+ ]=

18 Soluzioni acide o basiche
Kw = [ H+ ] [OH- ]= 10-14 H2O H+ + OH- [ H+ ] [OH- ] 10-7 10-7

19 Soluzioni acide o basiche
Kw = [ H+ ] [OH- ]= 10-14 H2O H+ + OH- [ H+ ] [OH- ] 10-7 10-7 [ H+ ] [OH- ] 10-6 10-8 [ H+ ] [OH- ] 10-5 10-9 [ H+ ] [OH- ] 10-1 10-13

20 Soluzioni acide o basiche
Kw = [ H+ ] [OH- ]= 10-14 H2O H+ + OH- [ H+ ] [OH- ] 10-13 10-1 [ H+ ] [OH- ] 10-9 10-5 [ H+ ] [OH- ] 10-8 10-6 [ H+ ] [OH- ] 10-7 10-7 [ H+ ] [OH- ] 10-6 10-8 [ H+ ] [OH- ] 10-5 10-9 [ H+ ] [OH- ] 10-1 10-13

21 Aggiunta di acidi o basi ad H2O
Kw = [ H+ ] [OH- ]= 10-14 H2O H+ + OH- H+

22 Aggiunta di acidi o basi ad H2O
Kw = [ H+ ] [OH- ]= 10-14 H2O H+ + OH- OH-

23 Aggiunta di acidi o basi ad H2O
Kw = [ H+ ] [OH- ]= 10-14 H2O H+ + OH- OH- + H+

24 Definizione di Arrhenius
Le sostanze che dissociandosi in acqua dando ioni idrogeno sono acide Le sostanze che dissociandosi in acqua danno ioni idrossido sono basiche H2O HCl H+ + Cl- H2O NaOH Na+ + OH- Neutralizzazione di un acido con una base H+ +OH- H2O

25 Alcuni Acidi

26 Alcune Basi

27 Acidi e basi CO2 SO2 Perché le pioggie sono acide?
Perché l’atmosfera contiene alcuni ossidi di non metalli, eg CO2 SO2

28 Reazione acida SO2 + H2O HSO3- + H+

29 Definizione di Brönsted-Lowry
Un acido è una qualunque sostanza che è capace di donare uno ione idrogeno (protone) ad un altra sostanza in una reazione chimica Una base è una sostanza che accetta lo ione idrogeno dall'acido HCl + H2O Cl- + H3O+ HNO3 + H2O NO3- + H3O+ CO2 + 2H2O HCO3- + H3O+

30 Definizione di Brönsted-Lowry
Un acido è una qualunque sostanza che è capace di donare uno ione idrogeno (protone) ad un altra sostanza in una reazione chimica Una base è una sostanza che accetta lo ione idrogeno dall'acido NaOH + H2O OH- + Na+ NH3 + H2O OH- + NH4+

31 Definizione di Brönsted-Lowry
Acidi e basi esistono sempre in coppia. In soluzione acquosa H2O si puo’ comportare come acido oppure come base HCl + H2O Cl- + H3O+ Accetta un H+ CO2 + H2O HCO3- + H3O+ Accetta un H+ NH3 + H2O OH- + NH4+ Dona un H+

32 Definizione di Brönsted-Lowry
Tuttavia, la definizione di acido o base non è vincolata alla presenza del solvente

33 Esempi di reazione acido-base secondo Brönsted- Lowry
HCl(gas) + H2O H3O+ + Cl- H2O H3O+ + Cl- + NH NH4+ + Cl- + H2O HCl(gas) + NH3(gas) NH4Cl-(sol) in assenza di solvente

34 Meccanismo molecolare di una reazione acido-base
ACIDI E BASI Rottura del legame covalente fra H e un non metallo con formazione di uno ione H+ che si lega alla base attraverso una coppia di non legame della base stessa.

35 Due concetti importanti
Una reazione acido-base in soluzione è sempre un equilibrio chimico Per ogni acido è possibile definire una base coniugata e viceversa

36 Equilibrio acido-base
Ogni reazione acido-base deve essere scritta come un equilibrio Base 1 + Acido 2 Acido 1 + Base 2 Cl H3O+ HCl H2O

37 Costante di dissociazione acida Ka
HA + H2O H3O+ + A- Keq = [ H3O+ ] [A- ] [ HA ] [ H2O ] Ka = [ H3O+ ] [A- ] [ HA ]

38 Costante di dissociazione acida Ka
La costante di dissociazione acida, Ka, è la misura della forza di un acido, ovvero di quanto una reazione di dissociazione acida sia spostata verso destra.

39 Alcuni acidi HF 7,1.10-4 HNO2 4,5.10-4 CH3COOH 1,8.10-5 HClO 3,2.10-8
Ka HClO4 >1 HBr HCl HNO3 HF 7,1.10-4 HNO2 4,5.10-4 CH3COOH 1,8.10-5 HClO 3,2.10-8 HCN 4, NH4+ 5, H2O(*) 1,

40 La forza di un acido La forza di un acido è determinata dalla costante di dissociazione acida Ka = [ H3O+ ] [A- ] [ HA ] Tanto maggiore sarà il valore della costante e tanto piu’ l’acido sarà propenso a dissociarsi in soluzione, liberando ioni H+ HA + H2O H3O+ + A-

41 La forza di un acido Quando Ka >>1
La reazione si considera completamente spostata verso destra HCl + H2O H3O+ + Cl- Ovvero la dissociazione è quantitativa Esempio: se ho una soluzione acquosa dove la concentrazione iniziale di HCl= 10-2M, [H+]= 10-2M Tutto l’acido si dissocia in H+ e Cl-

42 Costante di dissociazione basica Kb
A- + H2O OH- + HA [ OH- ] [ HA ] Keq = [ A - ] [ H2O ] Kb = [ OH- ] [HA ] [ A- ]

43 Costante di dissociazione basica Kb
Attenzione! La base non è solo un composto che ha a disposizione degli ioni OH- Una base (secondo Broensted-Lowry) è qualsiasi sostanza che puo’ accettare uno ione H+ Es: Cl-, NH3, CN-, CO32- Invece, secondo la def. di Arrehenius, solo i composti che in soluzione liberano ioni OH- sono basi Es: NaOH, KOH, Ca(OH)2, Fe(OH)3

44 Definizione generale di una reazione acido-base
Ad ogni acido è associata una base coniugata Base 1 + Acido 2 Acido 1 + Base 2 Cl H3O+ HCl H2O

45 Reazioni acido-base Base 1 + Acido 2 Acido 1 + Base 2
L’equilibrio acido-base del tipo Base 1 + Acido 2 Acido 1 + Base 2 E’ sempre spostato verso la coppia piu’ debole

46 Acido e base coniugata NH4+ + H2O H3O+ + NH3 NH3 + H2O OH- + NH4+ Ka =
Kb = [ OH- ] [NH4+] [NH3] Ka Kb = [ H3O+ ] [NH3] [ OH- ] [NH4+] [NH4+ ] [NH3] =Kw= [ H3O+ ] [ OH- ]

47 Acido e base coniugata Tanto piu’ un acido è forte, tanto piu’ sarà debole la sua base coniugata HCl Cl- CH3COOH CH3COO- H2CO3 HCO3- HCN CN- NH3 NH4+ OH- = idrossidi ionici, es: NaOH, Ca(OH)2, KOH OH- H2O

48 Acido e base coniugata Tanto piu’ un acido è forte, tanto piu’ sarà debole la sua base coniugata Acido forte HCl Cl- Base nulla Acido debole CH3COOH CH3COO- Base debole Base debole Acido debole H2CO3 HCO3- HCN Base debole Acido debole CN- NH3 Base debole NH4+ Acido debole NaOH Base forte H2O Acido nullo

49 Equilibri in soluzione
Ogni specie chimica (molecola neutra o ione) in soluzione acquosa reagisce, almeno in linea di principio, con H2O. Salvo i casi in cui la specie chimica sia capace di ossidare l’ossigeno o ridurre l’idrogeno di H2O, si tratta SEMPRE di una reazione ACIDO-BASE

50 Equilibri in soluzione
Quindi ogni specie puo’ comportarsi o da ACIDO o da BASE. Per acidi e basi “nulle”, l’equilibrio è completamente spostato a sinistra e le proprietà acide o basiche di queste specie sono trascurabili in ogni contesto

51 Equilibri in soluzione
Non è infrequente il caso di una sostanza che in H2O puo’ avere, in principio, una comportamento sia acido che basico. Quale dei due comportamenti sarà il “predominante” dipende solo dal valore delle costanti di dissociazione Ka e Kb associate agli equilibri in esame

52 Equilibri in soluzione
NH H2O NH H3O+ Dissociazione acida base + acido acido + base NH OH- Dissociazione basica NH H2O acido + base base + acido Altri esempi….

53 Basta cosi’, per oggi

54 I logaritmi, questi sconosciuti
log A= B 10B= A

55 I logaritmi, questi sconosciuti
1= 100 log 1= 0

56 I logaritmi, questi sconosciuti
log A*B= logA + logB log 3,2x10-3= log 3,2 -3

57 I logaritmi, questi sconosciuti
log 1/A= - logA log 1/10-7 =-(log 10-7)= -(-7)=7

58 I logaritmi, questi sconosciuti
scala logaritmica -5 -4 -3 -2 -1 1 1 2 3 4 5 10-5 10-4 10-3 10-2 10-1 1 101 102 103 104 105 scala geometrica

59 Il pH e la sua scala Kw = [H3O+] [OH-]=1x10-14
log(1/Kw) =log(1/ [H3O+])+ log(1/ [OH-])=14

60 Il pH e la sua scala Kw = [H3O+] [OH-]=1x10-14
log(1/Kw) =log(1/ [H3O+])+ log(1/ [OH-])=14 pH = -log [H3O+] pOH = -log [OH-] pH + pOH = pKw = 14

61 Il pH e la sua scala [H3O+]=10-2, [OH-]=10-14

62 Il pH e la sua scala In soluzione acquosa, SEMPRE [H3O+] x [OH-]= 10-14

63 Il pH risultante è acido
pH di una soluzione di acido forte Si calcoli il pH di una soluzione M di HNO3 HNO3 è un acido forte con Ka > 1 quindi in H2O si dissocia completamente: [H3O+] derivante dall’acido = CHNO3= M pH = -log = 1 Il pH risultante è acido

64 pH di una soluzione di acido forte
[H+]=CA pH= -log(CA)

65 pH di una soluzione di base forte
[OH-]=CB pOH= -log(Cb) pH= 14 - pOH

66 Si calcolino il pH ed il pOH di una soluzione acquosa 1
Si calcolino il pH ed il pOH di una soluzione acquosa x 10-4 M di HClO4 HClO4 è un acido forte con Ka > 1 quindi in H2O si dissocia completamente: [H3O+] derivante dall’acido = CHClO4= 1.00 x 10-4 M pH = -log 1.00 x 10-4 = 4 poiché [H3O+] [OH-] = 1.0 x M risulta che: [OH-] = 1.0 x 10-14/1.0 x 10-4 = 1.0 x M pOH = 10.0 Si noti che pH + pOH = pKw= 14

67 Si verifica a posteriori che l’approssimazione fatta sia lecita:
Nel problema non si è tenuto conto del contributo degli ioni H3O+ derivanti dalla dissociazione dell’H2O Si verifica a posteriori che l’approssimazione fatta sia lecita: dato che la [OH-] = M deriva dalla dissociazione delle molecole di H2O, la [H3O+] derivante dalla medesima dissociazione sarà uguale, cioè pari a M Questa concentrazione è trascurabile rispetto alla concentrazione di [H3O+] derivante dall’acido (10-4 M)

68 Si calcoli il pH di una soluzione 1.00 x 10-7 M di HClO4
HClO4 è un acido forte con Ka > 1 quindi in H2O si dissocia completamente: CH3O+ derivante dall’acido = CHClO4= 1.00 x 10-7 M tale concentrazione è paragonabile alla dissociazione delle molecole di H2O che quindi contribuirà al pH della soluzione: [H3O+] = 1.00 x x dove x è la concentrazione di H3O+ , e quindi anche di OH-, derivante dalla dissociazione del solvente

69 la concentrazione totale di [H3O+] = 1.62 x 10-7 M
quindi: Kw = (1.00 x x) x = 1.0 x 10-14 x = 0.62 x 10-7 M la concentrazione totale di [H3O+] = 1.62 x 10-7 M pH = 6.79 Si noti che il pH è acido come atteso

70 Solo quando gli ioni H3O+ derivanti da un acido sono in concentrazione < 10-6 M occorre tenere conto del contributo della dissociazione dell’acqua al pH


Scaricare ppt "L’ Equilibrio chimico aA +bB cC + dD"

Presentazioni simili


Annunci Google