La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

GAS CROMATOGRAFIA.

Copie: 1
GAS CROMATOGRAFIA.

Presentazioni simili


Presentazione sul tema: "GAS CROMATOGRAFIA."— Transcript della presentazione:

1 GAS CROMATOGRAFIA

2 In GC è fondamentale che gli analiti possano essere vaporizzati per via termica e a pressione ambiente (principale limite GC) I componenti della miscela una volta vaporizzati sono separati in seguito alla ripartizione tra una fase gassosa mobile e una fase stazionaria La fase mobile non interagisce con l’analita. La sua solo funzione è di carrier. La separazione dipende quindi dalle caratteristiche chimico-fisiche della fase stazionaria e dalla temperatura

3

4

5 Classificazione delle tecniche gascromatografiche
I criterio (stato fisico fase stazionaria) GC Gas solido Gas liquido II criterio (caratteristiche geometriche colonna ) GC Colonne impaccate Colonne capillari

6 Colonne impaccate: la fase stazionaria è formata da un solido granulare poroso o da un liquido deposto su un supporto costituito da particelle inerti. La colonna è costituita da un tubo di acciaio o vetro di lunghezza da 1 a 6 metri con diametro interno di mm. riempimento ID mm

7 Colonne capillari: la fase stazionaria viene depositata sotto forma di film sottilissimo ( µm) sulla parete interna di un capillare con diametro mm e lungo da 15 a 100 m. Il carrier percorre il canale lasciato libero dalla fase stazionaria

8

9 Le prestazioni di una separazione GC vengono valutate in base a:
selettività: in GC dipende solo dalla fase stazionaria e dalla sua temperatura. Non esistono differenze tra colonne impaccate e capillari efficienza: Notevoli differenze tra colonne impaccate e capillari: colonne impaccate N  4000, colonne capillari N range (la permeabilità è nettamente superiore nelle colonne capillari e questo permette di raggiungere lunghezze fino anche a 150 m). Per aumentare l’efficienza si può agire sulle seguenti variabili: 1. Lunghezza colonna 2. Diametro delle particelle (per colonne impaccate) 3. Liquido di ripartizione: altamente selettivo per l’analita e poco viscoso 4. diametro interno della colonna (sia per colonne impaccate sia per quelle capillari) Risoluzione: dato N, è solitamente maggiore per le colonne capillari rispetto a quelle impaccate Asimmetria picchi

10 Fase Mobile: Il gas Carrier
Il gas carrier deve avere le seguenti caratteristiche: elevata inerzia chimica verso gli analiti e la fase stazionaria (gas nobili e azoto) elevato grado di purezza. In particolare devono essere assenti umidità (disattivazione fase stazionaria), ossigeno (ossidazione fase stazionaria) e idrocarburi (aumento linea base) Compatibilità con il rivelatore I gas di trasporto più usati sono: idrogeno elio e miscele elio/idrogeno azoto argon Diossido di carbonio

11 La fonte del gas di trasporto può essere rappresentato da bombole di acciaio dotate di riduttore di pressione (un secondo riduttore di pressione è presente nella GC) In alternativa si possono utilizzare dei generatori di gas (per azoto e idrogeno)

12 Fasi stazionarie per GC
Fasi stazionarie solide (di uso limitato rispetto alle fasi liquide): Il meccanismo di separazione è per adsorbimento (la separazione dipende dalla forza di legame tra le molecole di analita e i siti attivi della fase stazionaria). Si utilizza tale tecnica per separare gas che non ripartiscono nella fase liquida (azoto, ossigeno, monossido di carbonio) e molecole organiche e in genere composti bassobollenti (metanolo, etanolo, acqua). I materiali più usati come fase stazionaria sono: Gel di silice Allumina Carbone attivo (mediamente polare) Zeoliti (silicati di alluminio e sodio)

13 Fasi stazionarie liquide: In tale tecnica le molecole di analita si sciolgono nella fase stazionaria liquida. Si ha quindi una ripartizione dell’analita tra la fase fissa (liquido) e la fase gassosa. Nelle colonne impaccate e nelle SCOT, la fase liquida è ancorata su un supporto inerte che deve avere le seguenti caratteristiche: Inerzia chimica Resistenza meccanica e termica Buon grado di bagnabilità da parte del liquido di ripartizione Bassa resistenza al flusso di gas Disponibilità sotto forma di particelle sferiche I materiali più usati sono Terra di diatomee (scheletri di piante unicellulari): materiale molto poroso con un buon grado di assorbività (fino al 30% del suo peso). I numerosi gruppi idrossilici vengono rimossi per silanizzazione con dimetilclorosilano (DMCS) o esametildisilazano (HMDS) Teflon: poco adsorbenti Vetro: poco adsorbenti

14 Silanizzazione con dimetilclorosilano (DMCS) o esametildisilazano (HMDS)

15 Nelle colonne WCOT, la fase stazionaria viene depositata sulle superficie interna della colonna di vetro o di silice fusa Liquidi di ripartizione: Il liquido di ripartizione da depositare sul supporto solido deve soddisfare numerosi requisiti tra cui: Bassa tensione di vapore (per minimizzare la perdita di liquido durante le analisi) (la tensione di vapore aumenta esponenzialmente all’aumentare della temperatura) elevata stabilità termica Elevata inerzia chimica Buon effetto solvente sulla miscela Bassa viscosità per diminuire la resistenza al trasferimento di massa Sulla base della polarità i liquidi di ripartizione si possono suddividere nelle seguenti classi: prima classe: apolari (idrocaarburi o siliconi con sostituenti non polari) seconda classe a bassa polarità quali derivati siliconici (polisilossani) con sostituenti polari terza classe: polari (poliglicoli, polialcol e loro esteri) Quarta classe: molto polari (glicoli, glicerina, idrossiacidi)

16

17 Regola per la scelta della fase stazionaria: la scelta si basa sulla regola “il simile sciogli il simile” . es. le colonne apolari sono le migliori per i soluti apolari ecc. Polarità soluti

18 (escono in base al loro punto di ebollizzione)
Componenti olio di menta Colonna apolare (escono in base al loro punto di ebollizzione) Colonna polare (Carbovax) (trattiene fortemente i soluti polari)

19 Fasi stazionarie legate: La fase stazionaria liquida, trascinata dal gas di trasporto, si impoverisce inevitabilmente con il passare del tempo (bleeding). Questo fenomeno comporta l’aumento del disturbo del segnale di fondo (ad elevate temperature) (deriva) Per ovviare tale problema si lega chimicamente la fase ai gruppi idrossilici della silice di supporto o alle pareti della colonna  fase stazionaria legata. Queste trattamento permette inoltre il lavaggio con solvente delle colonne contaminate

20 Sistema di iniezione del campione
Il campione viene iniettato (mediante opportuna siringa) attraverso un setto di gomma o silicone nella camera riscaldata in testa alla colonna La camera viene generalmente riscaldata circa 50°C oltre il p.e. del componente meno volatile. Per le colonne impaccate il volume del campione varia da 0.1 a 20 µl. Per le colonne capillari la portata è notevolmente inferiore (almeno un fattore di 100) e richiedono un sistema di ripartizione

21 Iniezione frazionata (split)
Le colonne capillari hanno una bassa portata: è quindi necessario che solo una frazione del campione iniettato raggiunga la colonna. Il sistema di ripartizione (split) invia solo una parte del campione alla colonna e la rimanente parte viene scaricata (rapporto di frazionamento da 1:50 a 1:100). Si usa tale tecnica quando gli analiti costituiscono almeno lo 0.1% del campione

22 Iniezione non frazionata (splitless) del campione
Per campioni diluiti (gli analiti costituiscono meno dello 0.01% del campione) si utilizza la iniezione non frazionata (splitless)

23 Sistema di termostatazione della colonna
La temperatura è cruciale nelle separazioni cromatografiche e pertanto la colonna è alloggiata in forni termostatati. L’analisi GC può essere effettuata a T costante (isoterma) o variabile (gradiente di temperatura). Le rampe di temperatura possono essere lineari o asimmetriche con diverse fasi di plateau. Temperatura Tempo

24 Isoterma (45°C) Isoterma (145°C) Gradiente (da 30 a 180°C)

25

26

27 Rivelatori I rivelatori sono dispositivi posti in uscita alla colonna che consentono di individuare i componenti di una miscela. Si distinguono in rivelatori universali e selettivi, quest’ultimi consentono di individuare solo particolari categorie di composti. Il rivelatore ideale ha le seguenti caratteristiche: adeguata sensibilità buona stabilità e riproducibilità risposta lineare in un intervallo di parecchi ordini di grandezza tempo di risposta breve

28 Rivelatori a ionizzazione di fiamma (FID):
E’ ampiamente utilizzato e di tipo universale. L’effluente della colonna viene direzionato in una fiamma aria/idrogeno. La maggior parte dei composti organici quando pirolizzati in tale fiamma producono ioni ed elettronii che generano una corrente elettrica (segnale) Vantaggi: buona sensibilità, range dinamico, robusto Svantaggi: metodo distruttivo; non sensibile a composti non idrocarburici come ad es. N2, O2, CO2, NH3 anodo catodo

29 Rivelatori a conducibilità termica (TCD):
Rivelatore “storico” e ancora adesso diffuso. E’ un esempio di rivelatore robusto e universale. Il rivelatore dipende da un elemento riscaldato elettricamente (filamento di tungsteno o platino), la cui temperatura dipende dalla conducibilità termica del gas che lo circonda. He e H2 buona conducibilità termica. La presenza di analiti (organici e inorganici) riduce la conducibilità termica del gas con conseguente  temperatura filamento (segnale) Vantaggi: detector semplice e robusto, universale, range dinamico Svantaggi: bassa sensibilità

30 Rivelatori a cattura di elettroni (ECD):
Risponde in maniera selettiva a composti organici contenenti alogeni. Il gas che entra nel rivelatore viene ionizzato da elettroni ad alta energia (radiazioni ) emessi da una lamina contenente 63Ni radioattivo. La ionizzazione del gas di trasporto (solitamente N2) genera un flusso di elettroni attratti dall’anodo (corrente stazionaria). Quando le molecole dell’analita ad elevata affinità elettronica entrano nel rivelatore, catturano gli elettroni riducendo la corrente Vantaggi: sensibilità elevata per composti alogenati Svantaggi: non sensibile per ammine, alcoli e idrocarburi

31 Derivatizzazione in GC
La derivatizazzione è un processo che permette di modificare chimicamente un composto (es. altobollente) al fine di ottenere un nuovo composto le cui proprietà chimico-fisiche sono compatibili con l’analisi GC La derivatizzazione permette le seguenti modifiche: - aumento la volatilità (elimina la presenza di gruppi polari come OH, SH, NH) - riduzione volatilità (permette l’analisi di composti volatili a basso peso molecolare difficili da maneggiare e che coeluiscono con il solvente) - aumenta la stabilità - aumenta la sensibilità (inserimento di gruppi alogenati per ECD) Le principali reazioni di derivatizzazione sono: Silanizzazione Alchilazione acilazione

32 Derivatizzazione mediante silanizzazione
La reazione di silanizzazione produce composti volatili e stabili termicamente. In tale reazione l’H attivato viene sostituito con un gruppo trimetilsililico mediante una reazione di attacco nucleofilo (SN2; la reazione è guidata dal gruppo uscente) L’agente silanizzante più semplice è il trimetilclorosilano (CH3)3-Si-Cl (TMS-Cl). -OH -SH -COOH -NH2 -NH CONH2 -OTMS -STMS -COOTMS -NHTMS, N(TMS)2 -NTMS CONHTMS TMS-Cl La reattività del gruppo funzionale verso la silanizzazione il seguente: Alcoli (primario> secondario>terziario) > fenolo > carbossile > ammina> ammide

33 Dato che i reattivi reagiscono con H2O, è necessario usare solventi anidri (la piridina è il solvente più utilizzato) Le colonne caratterizzate da idrogeni attivi (CARBOVAX) non sono compatibili con questi derivatizzanti principali agenti silalizzanti (CH3)3-Si-Cl (TMS-Cl). TMS-Cl TRIMETILCLOROSILANO (CH3)3Si-imidazolo TMSIM (trimetilsililimidazolo) NB selettivo per OH, non reagisce con ammine (CH3)3-Si-O-C(CH3)=N-Si(CH3)3 BSA (N,O-bis-trimetilsilil-acetamide) (CH3)3-Si-N(C2H5)2 TMS-DEA (N-trimetilsilil-dietilamina)

34 Derivatizzazione mediante alchilazione
La derivatizzazione mediante alchilazione riduce la polarità di molecole sostituendo idrogeni attivi con gruppi alchilici. La reazione si effettua con alogenuri alchilici o arilici, diazoalcani secondo le reazioni: R-NH2 + 2Cl-R’  R-NR’ + 2HCl R-COOH + CH2N2  RCOO-CH3 + N2 R-OH R-SH R-COOH R-NH2 R-NH R-CONH2 R-OR’ R-SR’ R-COOR’ R-NHR’ R-NR’2 R-COONR’2 Tra i principali agenti alchilanti: BF3 in MeOH, dialchilacetali, pentafluorobenzilbromuri

35 Derivatizzazione mediante acilazione
La reazione di acilazione riduce la polarità di gruppi amminici, idrossilici, tiolici e inserisce gruppi funzionali alogenati per ECD. La reazione di acilazione si utilizza per composti altamente polari come carboidrati e amino acidi. I reattivi utilizzati sono solitamente anidridi e alogenuri acilici I principali agenti derivatizzanti sono anidridi fluorinate (anidride pentafluoropropionica e eptafluorobutirrica)

36 Anidride trifluoroacetica

37

38

39 Analisi quantitativa in gas-cromatografia
La gascromatografia è ampiamente usata per l’analisi quantitativa: l’altezza o l’area dei picchi è proporzionale con la quantità dei diversi componenti la miscela analizzata Esistono diversi metodi di misura della concentrazione tra cui: Normalizzazione interna: è il metodo usato per determinare la composizione percentuale quando tutti i componenti della miscela sono rappresentati nel cromatogramma Metodo della standardizzazione esterna: consente di determinare la concentrazione di uno o più componenti utilizzando lo std. e allestendo la curva di calibrazione Aggiunta singola o multipla


Scaricare ppt "GAS CROMATOGRAFIA."

Presentazioni simili


Annunci Google