La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

La rete di distribuzione del futuro: Smart Grids

Presentazioni simili


Presentazione sul tema: "La rete di distribuzione del futuro: Smart Grids"— Transcript della presentazione:

1 La rete di distribuzione del futuro: Smart Grids
Roma, 10/06/2015

2 Enel Distribuzione 2014 La Società Dimensione del Business La Rete
16.890 Personale: La Società Clienti: Clienti Passivi connessi (Y2014) Generazione Distribuita connessa (Y2014): DGs connessi al 2014 Market share - Clienti Dimensione del Business 31.6 M 2.3 GW 0,6 GW (52.000) 85% km di linee: MT km; BT km 2.100 cabine AT/MT, tutte controllate da remoto cabine MT/BT, 30% controllate da remoto 28 Centri di Controllo La Rete

3 Enel Distribuzione sul territorio
Macro Area Territoriale Nord Ovest Macro Area Territoriale Nord Est Macro Area Territoriale Nord Centro Macro Area Territoriale Nord Sud 11 Distribuzioni Territoriali Rete Piemonte e Liguria Lombardia Triveneto Emilia Romagna e Marche Toscana e Umbria Lazio, Abruzzo e Molise Sardegna Campania Puglia e Basilicata Calabria Sicilia

4 Traditional Power Network

5 Distributed Generation
Necessary evolving of power lines Cost reduction of conversion and generation technologies Feed in Tariff for green energy production Spread of DGs randomly located on the grid with randomly injection of power Has led -Spread of distributed sources randomly located on the grid --- The presence of DGS in electrical grids increases the complexity of the regulation process because the injection of power from these sources, which is intrinsically random for generators based on renewable sources, can alter the voltage profiles on the network buses

6 Distributed Generation
Rete Italia 2014 NORD-OVEST connessioni 5.551 MW 26,2 NORD-EST connessioni 6.483 MW Non-RES 2,2 Hydro 1,1 Bio&Waste 2,5 16,5 Solare CENTRO connessioni 6.178 MW SUD connessioni 8.028 MW 3,9 Eolico connessioni MW Potenza connessa (GW) La rete di distribuzione del futuro: Smart Grids

7 Why Smart Grids are requested
“The Smart Grid will be a customer-centered, interactive, reliable, flexible, optimal, economical, economically responsive and, ultimately, a sustainable and environmentally responsible electrical power generation and distribution system. Electric utilities must play a key role in its development.” Smart Grid Technology Innovation Group Report, Tokyo Summit 2010

8 Towards intelligent networks

9 Implementing Smart Grids
Advantages Improving Power Quality Increase efficiency of power systems Reducing pollution Reducing system losses Supporting large-scale penetration of small-scale DGS Reducing primary energy consumption Creation of green jobs Provide to customers high quality electricity Especially air and therefore

10 Critical issues in the electrical network management system
Implementing Smart Grids Critical items Network devices potentially critical Feeder circuit breakers Protection devices Conductors On Load Tap Changer (OLTC) Critical issues in the electrical network management system Voltage regulation Harmonic pollution Grid disconnection Islanding Because the trasnformer regulates the voltage level of the network which changes continously in DG.

11 Voltage regulation Optimal voltage regulation is one of the main issues to address in a Smart Grid context Consideriamo il semplice circuito che rappresenta una linea MV a cui sono sottesi…. Con la rete attuale non possiamo controllare questo fenomeno. In più c’è il problema del bidirectional flow e la totale inversione del flusso.

12 Traditional Voltage Regulation
On Load Tap Changing Transformer Traditional Voltage Regulator Strategies applied in MV distribution systems could be not able to manage high penetration of DG plants Not able to manage active feeder Fail when the HV/MV power flow partially or completely reverses Nel caso normale (senza produttori), all’aumento di corrente (aumento del carico), diminuisce la tensione ed il variatore va ad aumentare il livello della tensione di sbarra. I produttori generano un aumento di corrente, e se c’è inversione di flusso, il modulo della corrente visto dal variatore (vede solo il modulo) aumenta, ma in realtà non c’è carico e quindi già si verifica di per sé un aumento di tensione sulla rete, con aggravio di aumento di tensione da parte del trasformatore. La soluzione adottata al momento è di bloccare il valore della tensione di sbarra ad un valore fisso.

13 Energy Storage System One possible solution
Renewable sources integration Peak load leveling Power quality improvement Islanding operation

14 Energy Storage System What kind of storage [MW] MWh Pumping Hydro
Short-Term Response Energy Storage (Seconds) Long-Term Response Energy Storage (Hours) Real Long-Term Response Energy Storage (Days) Seconds Hours Days MWh [MW] [Time] Pumping Hydro Electrochemical Compressed air Super-capacitor SMES Fuel cell

15 Simulation A power flow problem 1 HV/MV Transformer (25MVA)
12 MV buses (2 dedicated to DGs) 366 nodes PVGIS model Annual load curve PV nominal power installed 23MW MatPower environment

16 Simulation results January Power (MW) Time (h) PV production
Power flow Power absorption

17 Simulation results February Power (MW) Time (h) PV production
Power flow Time (h) Power absorption

18 Simulation results April Power (MW) Time (h) PV production Power flow
Power absorption

19 Simulation results August Power (MW) Time (h) PV production Power flow
Power absorption

20 Islanding “A condition in which a portion of the utility system that contains both loads and distributed resources remains energized while isolated from the remainder of the utility system” . (IEEE Std )

21 Power balance between source and load
Why islanding occurs Line disconnection + Power balance between source and load High probability that Islanding occurs In this case normal protections does not stop the DG to energized the Point of Common Coupling (PCC) IEEE Std

22 Islanding Critical items Safety issues for the line workers
Distributed inverters and generally customers devices could be damaged Responsibility of DSO towards customers

23 How Islanding occurs MV/LV substation Feeder circuit breaker: on
Feeder circuit breaker: off micro-grids

24 Implemented Smart Grids technologies
EV charging infrastructure Mgt: Monitoring and control of charging process Interoperable and Multivendor EV charging Vehicle-to-Grid and VAS enabled Load Shaping, load flexibility Smart Metering Infrastructure: Remote meter reading and mgt LV monitoring and Outages Mgt Fraud detection and balancing Reliable billing Fast switching Data validation and settlement Active Demand and VAS enabled (Smart Info) DER Integration: DER monitoring Forecasting Information Exchange with the TSO DER control Voltage regulation Local Dispatching Storage Network Management: Remote Control and Automation Monitoring in real time Planning and Maintenance Information Exchange with the TSO Information Exchange with PA

25 1.600 Infrastrutture di Ricarica in Italia, 2.500 in Europa
E-Mobility Main projects in Italy Progetto Regione Emilia-Romagna Bologna, Reggio Emilia, Rimini, Piacenza, Ferrara, Ravenna, Forlì, Cesena,Parma,Maranello,Formigine,Modena,Imola Interoperabilità con Distributori Hera ed Iren E-Mobility Italy Roma, Milano, Pisa Primo progetto in Italia. Partnership Enel-Mercedes Progetto Umbria 13 città d’arte (Assisi,Orvieto,Perugia. Spoleto…) Interoperabilità con ASM Terni Siena Fornitura 43 infrastrutture per rete pubblica Accordo Roma Capitale-Enel-Acea Roma Interoperabilità con Acea Smart City Bari, Genova, L’Aquila Mobilità Elettrica per le Smart Cities Progetti Europei Progetto Hinterland di Milano Assago, Rho, San Donato Milanese, Segrate, Sesto San Giovanni, Interoperabilità con Disiributore A2A Enel – Poste Italiane Fornitura di oltre 400 Infrastrutture di ricarica Consegna della posta a “Zero emissioni” Matera – Capitale Europea della Cultura Protocollo per mobilità convergente con Brindisi (Aeroporto) e Lecce Protocollo Ikea Infrastrutture di ricarica in tutti gli store italiani (Rete Pubblica) Protocollo Enel Eni Infrastruttura Fast Recharge presso Eni Station su superstrade e autostrade. Prima installazione Pomezia 1.600 Infrastrutture di Ricarica in Italia, in Europa

26 Enel Smart grids Main projects in Italy
Durata : L’AQUILA SMART CITY Durata: Durata : maggio – ottobre 2015 Durata : Proposal under evaluation PIANO OPERATIVO REGIONALE POR CAMPANIA Durata : Durata : PUGLIA ACTIVE NETWORK PIANO OPERATIVO INTERREGIONALE Durata : PROGETTO ISERNIA Durata :

27 Enel Distribuzione for EXPO 2015
Smart Grid Innovative control and fault detection system for management and operation of the electricity distribution network Storage System and integration of renewable energy sources Enel electric mobility infrastructure (with Pole Charging Stations) to recharge the Expo Electrical Vehicles Operation Center to monitor and control all the electrical parameters 8.500 lighting points LED technologies with high efficiency

28 Active Energy Management
The Site May 1st 2015 – October 1,1 Mln m2 between Milano and Rho 75 MW required 160 temporary buildings 1 office building (7 floors) + Performance Center 1 representative building (3500 m2 h 24 m height) > m2 of Greenhouse 340 flats + 14 service areas 20 Mln visitors 30 electric people mover (range 100 km) 50 hybrid bus (range > 100 km) 10 electrical cars 50 electrical freight transport Show case of worldwide and innovative technologies Media Center

29 EXPO 215 Feeding the planet energy for life


Scaricare ppt "La rete di distribuzione del futuro: Smart Grids"

Presentazioni simili


Annunci Google