Scaricare la presentazione
La presentazione è in caricamento. Aspetta per favore
PubblicatoAdriana Tedesco Modificato 10 anni fa
1
L 16 Progetto delle alternative Andrea Castelletti Modellistica e Controllo dei Sistemi Ambientali
2
2 Portatori 0. Ricognizione e obiettivi 1. Definizione delle azioni 2. Definizione di criteri e indicatori 3. Identificazione del modello 4. Progetto delle alternative 6. Valutazione delle alternative 5. Stima degli effetti 7. Comparazione e negoziazione Alternative di compromesso 8. Mitigazione e compensazione Cercare ancora? si 9. Scelta politica no PIANIFICAZIONE Alternativa di miglior compromesso MODSS
3
3 Quali alternative considerare Troppo spesso le alternative considerate nella pratica progettuale sono solo quelle suggerite dallesperienza dellAnalista o proposte dal Decisore e dai Portatori dinteresse. E invece opportuno considerare tutte le alternative che si ottengono combinando in tutti i modi possibili le azioni identificate nella Fase 1. Es. Progetto Verbano: s scala di deflusso f fascia di regolazione d valore di DMV p politica di regolazione AZIONI E un insieme finito con 2 elementi. Sono insiemi infiniti. politiche fasce DMV SCALA att politiche fasce DMV SCALA +600 Infinite alternative
4
4 Problema di Progetto Il Problema di Progetto In generale, anche se non sempre infinito, il numero delle alternative è molto elevato, pertanto è necessario selezionare le più interessanti" più interessanti secondo i criteri specificati dai Portatori dinteresse. Sulla base degli indicatori che quantificano tali criteri si definiscono degli obiettivi e si individuano le alternative efficienti rispetto ad essi.
5
5 Condizioni di completa razionalità La soluzione di un Problema di Progetto risulta in genere complessa, perché: gli obiettivi sono molteplici e non esiste quindi un criterio unico con cui scegliere tra le alternative. IPOTESI SEMPLIFICATIVA: completa razionalità Esiste un unico indicatore di progetto Il caso è di scarso interesse nel paradigma della decisione partecipata, perché: o è presente un unico Portatore dinteresse: caso molto raro o lAnalista definisce lobiettivo escludendo i Portatori (ad esempio quando adotta lAnalisi Costi-Benefici): assenza di partecipazione !
6
6 Lindicatore di progetto i deve essere tale che, date due alternative A1 e A2, se i(A1) < i(A2) allora A1 è preferita ad A2. Lalternativa ottima è quella che rende i minimo. Ad esempio: i non può essere un indicatore come larea S di una zona umida In altre parole: i deve riflettere la soddisfazione prodotta dallalternativa, cioè il suo Valore. V S
7
7 0. Ricognizione e obiettivi 1. Definizione delle azioni 2. Definizione di criteri e indicatori 3. Identificazione del modello 4. Progetto delle alternative 6. Valutazione delle alternative 5. Stima degli effetti 7. Comparazione e negoziazione Alternative di compromesso 8. Mitigazione e compensazione Cercare ancora? si PIANIFICAZIONE Alternativa di miglior compromesso 9. Scelta politica no La PIP in condizioni di razionalità totale Alternativa ottima Serve: o in presenza di due modelli o per validare il risultato
8
8 Anche in condizioni di Razionalità totale il Problema di progetto resta difficile In presenza di un unico indicatore la soluzione del Problema di Progetto è lalternativa ottima (quella cui corrisponde il miglior valore dellindicatore). Tuttavia permangono 3 difficoltà: 1. la presenza di infinite alternative 2. lincertezza degli effetti indotta dal casualità dei disturbi 3. la presenza di decisioni ricorsive
9
9 Infinite alternative Se il numero delle alternative è finito (e abbastanza piccolo): procedura esaustiva per ogni alternativa A calcolo Se i è un costo, lalternativa ottima è quella che min i Se il numero delle alternative è infinito (o molto elevato) occorre individuare una procedura che analizzando solo un numero finito di alternative individui quella ottima (o almeno una molto prossima ad essa).
10
10 Incertezza degli effetti Non è possibile ordinare le alternative rispetto a i... indicatore casuale (stocastico o incerto) disturbi casuali... Esempio Progetto: costruzione di un argine fluviale contro le esondazioni Decisione: altezza u P dellargine i = danni futuri attualizzati + costo costruzione argine i cambia a seconda della traiettoria dei livelli Non è nota (è casuale!) quando devo scegliere u p. A parità di u p possono realizzarsi valori diversi di i. Che fare ?
11
11 Incertezza degli effetti non è possibile ordinare le alternative rispetto a J... indicatore casuale (stocastico o incerto) disturbi casuali... Esempio Progetto: costruzione di un argine fluviale contro le esondazioni Decisione u P : altezza dellargine J = danni futuri attualizzati + costo costruzione argine J cambia a seconda della traiettoria dei livelli non è nota (è casuale) quando devo scegliere u p a parità di u p possono realizzarsi diversi valori di J che fare ? È necessario filtrare lincertezza: ad ogni u P si associa un valore deterministico di i. 1) Se i è stocastico, individuo la sua distribuzione di probabilità, oppure, se i è incerto, individuo linsieme dei valori che assume. 2) Scelgo lalternativa ottima sulla base di unopportuna statistica. Nellesempio: scelgo u P per cui è minimo il valore atteso di i (min E [i]) oppure scelgo u P per cui è minimo il valore di i nel caso peggiore (min max i) È necessario filtrare lincertezza: ad ogni u P si associa un valore deterministico di i. 1) Se i è stocastico, individuo la sua distribuzione di probabilità, oppure, se i è incerto, individuo linsieme dei valori che assume. 2) Scelgo lalternativa ottima sulla base di unopportuna statistica. Nellesempio: scelgo u P per cui è minimo il valore atteso di i (min E [i]) oppure scelgo u P per cui è minimo il valore di i nel caso peggiore (min max i) criteri di filtraggio del disturbo
12
12 Decisioni ricorsive decisioni ricorsive Sono trasformabili in una decisione di pianificazione definendo una politica di regolazione, che, nel caso più semplice, è espressa da una successione periodica di leggi di controllo m t () Come definirle?
13
13 Condizioni di razionalità parziale Una volta risolte queste difficoltà e individuati gli algoritmi risolutivi del Problema di progetto in condizioni di razionalità totale affronteremo il Problema nel caso generale di molteplici obiettivi.
14
14 Leggere MODSS Cap. 7
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.