La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

A.S.E.6.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 6 Algebra BOOLEANA Sistema matematico formaleSistema matematico formale Elementi, operazioni,

Presentazioni simili


Presentazione sul tema: "A.S.E.6.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 6 Algebra BOOLEANA Sistema matematico formaleSistema matematico formale Elementi, operazioni,"— Transcript della presentazione:

1 A.S.E.6.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 6 Algebra BOOLEANA Sistema matematico formaleSistema matematico formale Elementi, operazioni, postulatiElementi, operazioni, postulati Espressioni algebricheEspressioni algebriche Tabella di veritàTabella di verità Espressione algebrica vs. Tabella di veritàEspressione algebrica vs. Tabella di verità Mintermini e MaxterminiMintermini e Maxtermini Tabella di verità vs. Espressione algebricaTabella di verità vs. Espressione algebrica

2 A.S.E.6.2 Algebra della Logica Gerge BooleGerge Boole Matematico inglese(1815 – 1864)Matematico inglese(1815 – 1864) Algebra della Logica, Algebra di Boole, Algebra BooleanaAlgebra della Logica, Algebra di Boole, Algebra Booleana Sistema matematico formale che descrive funzioni logicheSistema matematico formale che descrive funzioni logiche Funzioni che possono assumere al minimo (solo) due valoriFunzioni che possono assumere al minimo (solo) due valori VeroFalsoVeroFalso Le variabili di funzioni logiche possono assumere solo due valoriLe variabili di funzioni logiche possono assumere solo due valori Sistema matematico formaleSistema matematico formale Insieme di elementiInsieme di elementi insieme di operazioniinsieme di operazioni insieme di postulatiinsieme di postulati »TEOREMI

3 A.S.E.6.3 Definizioni Elementi (2) [Algebra delle commutazioni]Elementi (2) [Algebra delle commutazioni] 0 (logico)1 (logico)0 (logico)1 (logico) FalsoVeroFalsoVero Livello logico BasoLivello logico AltoLivello logico BasoLivello logico Alto 0 V5 V0 V5 V Costanti Possono assumere due valoriCostanti Possono assumere due valori VariabiliPossono assumere due valoriVariabiliPossono assumere due valori

4 A.S.E.6.4 Definizione di AND OperazioneOperazione –AND o PRODOTTO LOGICO PostulatoPostulato –loperazione AND è definita dalla tabella xy x y 00=0 01=0 10=0 11=1

5 A.S.E.6.5 Osservazioni 1. x y è uguale a 1 se e solo se x e y sono uguali a 1, altrimenti x y è uguale a 0 2.Si può estendere a n variabili: x 1 x 2 x n è uguale 1 se e solo se x 1 x 2 x n sono uguali a 1 La funzione AND corrisponde al concetto:La funzione AND corrisponde al concetto: un evento si verifica se e solo se tutte le condizioni sono verificate

6 A.S.E.6.6 Definizione di OR OperazioneOperazione –OR o SOMMA LOGICA PostulatoPostulato –loperazione OR è definita dalla tabella xy x y 00=0 01=1 10=1 11=1

7 A.S.E.6.7 Osservazioni 1. x y è uguale a 0 se e solo se x e y sono uguali a 0, altrimenti x y è uguale a 1 2.Si può estendere a n variabili: x 1 x 2 x n è uguale 0 se e solo se x 1 x 2 x n sono uguali a 0 La funzione OR corrisponde al concetto:La funzione OR corrisponde al concetto: perché un evento si verifica è sufficiente che una sola condizioni sia verificata

8 A.S.E.6.8 Definizione di NOT OperazioneOperazione –NOT o Complemento Logico, o Negazione, o Inversione PostulatoPostulato –loperazione NOT è definita dalla tabella x x01 10

9 A.S.E.6.9 Osservazioni 1.se x è uguale a 0 allora x negato è uguale a 1, se x è uguale a 1 allora x negato è uguale a 0 2.Ovvero La funzione NOT corrisponde al concetto:La funzione NOT corrisponde al concetto: negazione della condizione

10 A.S.E.6.10 Funzione logica (o Boleana) Una funzioneUna funzione è una legge che fa corrispondere un valore logico (0 o 1) di u ad ogni combinazione di valori x 1,…..,x n. La funzione f è costituita da variabili logiche, costanti e le tre operazioni logiche fondamentaliLa funzione f è costituita da variabili logiche, costanti e le tre operazioni logiche fondamentali

11 A.S.E.6.11 Osservazioni Nelle funzioni logiche le parentesi indicano una gerarchia di esecuzione uguale a quella comunemente usata nelle espressioni aritmetiche noteNelle funzioni logiche le parentesi indicano una gerarchia di esecuzione uguale a quella comunemente usata nelle espressioni aritmetiche note Fra le operazioni logiche AND, OR e NOT esiste la gerarchia: 1) NOT, 2) AND, 3) ORFra le operazioni logiche AND, OR e NOT esiste la gerarchia: 1) NOT, 2) AND, 3) OR La gerarchia prima descritta consente di ridurre luso di parentesi nelle funzioni logicheLa gerarchia prima descritta consente di ridurre luso di parentesi nelle funzioni logiche

12 A.S.E.6.12 Tabella di Verità 1 Una funzione logica può sempre essere espressa da una tabella che prende il nome di:Una funzione logica può sempre essere espressa da una tabella che prende il nome di: TABELLA DI VERITÀ (TRUTH TABLE) OsservazioneOsservazione Una funzione di n variabili ammette 2 n possibili configurazioniUna funzione di n variabili ammette 2 n possibili configurazioni Una funzione di n variabili è completamente descritta da una tabella che ha sulla sinistra le 2 n possibili configurazioni degli ingressi e a destra i valori (0 o1) a secondo del valore della funzioneUna funzione di n variabili è completamente descritta da una tabella che ha sulla sinistra le 2 n possibili configurazioni degli ingressi e a destra i valori (0 o1) a secondo del valore della funzione

13 A.S.E.6.13 Tabella di verità 2 Funzione di tre variabiliFunzione di tre variabilixyzu000 f (0,0,0) 001 f (0,0,1) 010 f (0,1,0) 011 f (0,1,1) 100 f (1,0,0) 101 f (1,0,1) 110 f (1,1,0) 111 f (1,1,1)

14 A.S.E.6.14 Esempio xyzxy x + y x + z (x + y )(x + z ) yzu0001111101 0011111101 0101001000 0111001011 1000110000 1010111101 1100010000 1110011111

15 A.S.E.6.15 Passo 1 xyzxy x + y x + z (x + y )(x + z ) yzu0001111101 0011111101 0101001000 0111001011 1000110000 1010111101 1100010000 1110011111

16 A.S.E.6.16 Passo 2 xyzxy x + y x + z (x + y )(x + z ) yzu0001111101 0011111101 0101001000 0111001011 1000110000 1010111101 1100010000 1110011111

17 A.S.E.6.17 Passo 3 xyzxy x + y x + z (x + y )(x + z ) yzu0001111101 0011111101 0101001000 0111001011 1000110000 1010111101 1100010000 1110011111

18 A.S.E.6.18 Passo 4 xyzxy x + y x + z (x + y )(x + z ) yzu0001111101 0011111101 0101001000 0111001011 1000110000 1010111101 1100010000 1110011111

19 A.S.E.6.19 Passo 5 xyzxy x + y x + z (x + y )(x + z ) yzu0001111101 0011111101 0101001000 0111001011 1000110000 1010111101 1100010000 1110011111

20 A.S.E.6.20 Passo 6 xyzxy x + y x + z (x + y )(x + z ) yzu0001111101 0011111101 0101001000 0111001011 1000110000 1010111101 1100010000 1110011111

21 A.S.E.6.21 Finexyzxy x + y x + z (x + y )(x + z ) yzu0001111101 0011111101 0101001000 0111001011 1000110000 1010111101 1100010000 1110011111

22 A.S.E.6.22 Tabella dei Prodotti e delle Somme n = 3 nxyzps 0000 x y z x y z p0p0p0p01 x + y + z s0s0s0s00 1001 x y z x y z p1p1p1p11 x + y + z s1s1s1s10 2010 x y z x y z p2p2p2p21 x + y + z s2s2s2s20 3011 x y z x y z p3p3p3p31 x + y + z s3s3s3s30 4100 x y z p4p4p4p41 x + y + z x + y + z s4s4s4s40 5101 x y z p5p5p5p51 x + y + z x + y + z s5s5s5s50 6110 x y z p6p6p6p61 x + y + z x + y + z s6s6s6s60 7111 x y z p7p7p7p71 x + y + z x + y + z s7s7s7s70

23 A.S.E.6.23 Definizioni MINTERMINE p i è una funzione (prodotto) che vale 1 in corrispondenza alla sola configurazione i di valori delle variabiliMINTERMINE p i è una funzione (prodotto) che vale 1 in corrispondenza alla sola configurazione i di valori delle variabili MAXTERMINE s i è una funzione (somma) che vale 0 in corrispondenza alla sola configurazione i di valori delle variabiliMAXTERMINE s i è una funzione (somma) che vale 0 in corrispondenza alla sola configurazione i di valori delle variabili

24 A.S.E.6.24 Forma Canonica Somma di Prodotti SP xyzu 0001 p0p0p0p0 0011 p1p1p1p1 0100 0111 p3p3p3p3 1000 1011 p5p5p5p5 1100 1111 p7p7p7p7

25 A.S.E.6.25 Forma Canonica Prodotto di Somme PS xyzu 0001 0011 0100 s2s2s2s2 0111 1000 s4s4s4s4 1011 1100 s6s6s6s6 1111

26 A.S.E.6.26 Osservazioni La legittimità di rappresentare le funzioni nella forma canonica SP o PS deriva direttamente dalle proprietà delle operazioni OR, AND, NOTLa legittimità di rappresentare le funzioni nella forma canonica SP o PS deriva direttamente dalle proprietà delle operazioni OR, AND, NOT Una stessa funzione logica può essere scritta in molta formeUna stessa funzione logica può essere scritta in molta forme La manipolazioni delle espressioni booleane si basa sui teoremi che seguonoLa manipolazioni delle espressioni booleane si basa sui teoremi che seguono

27 A.S.E.6.27 Conclusioni Algebra BOLEANAAlgebra BOLEANA Insieme di elementiInsieme di elementi Variabili, costantiVariabili, costanti Insieme di operazioniInsieme di operazioni Insieme di postulatiInsieme di postulati Espressioni algebricheEspressioni algebriche Tabella di veritàTabella di verità Espressione algebrica vs. Tabella di veritàEspressione algebrica vs. Tabella di verità Tabella di verità vs. Espressione algebricaTabella di verità vs. Espressione algebrica

28 A.S.E.6.28 Riferimenti1 http://vlsi.iet.unipi.it/corsi/ASE/http://vlsi.iet.unipi.it/corsi/ASE/http://vlsi.iet.unipi.it/corsi/ASE/ LEZIONILEZIONI DataArgomento FilesDataArgomento Files 01/10/03IntroduzioneSlides 02/10/03Sistemi elettroniciSlides01/10/03IntroduzioneSlides 02/10/03Sistemi elettroniciSlides 03/10/03Introduzione ai segnaliSlides 04/10/03Progettazione di un sistema elettronicoSlides 08/10/03Sistemi numerici. base 2Slides03/10/03Introduzione ai segnaliSlides 04/10/03Progettazione di un sistema elettronicoSlides 08/10/03Sistemi numerici. base 2Slides

29 A.S.E.6.29 Riferimenti2 http://vlsi.iet.unipi.it/corsi/ASE/http://vlsi.iet.unipi.it/corsi/ASE/http://vlsi.iet.unipi.it/corsi/ASE/ ArchivioArchivio Testi di esame con soluzioniTesti di esame con soluzioni DataTestoSoluzioneDataTestoSoluzione 15/06/02ase_060702.pdfase_060702svol.pdf15/06/02ase_060702.pdfase_060702svol.pdfase_060702.pdfase_060702svol.pdfase_060702.pdfase_060702svol.pdf 06/07/02ase_060702.pdfase_060702svol.pdf06/07/02ase_060702.pdfase_060702svol.pdfase_060702.pdfase_060702svol.pdfase_060702.pdfase_060702svol.pdf 07/09/02ase_070902.pdfase_070902svol.pdf07/09/02ase_070902.pdfase_070902svol.pdfase_070902.pdfase_070902svol.pdfase_070902.pdfase_070902svol.pdf 21/09/02ase_210902.pdfase_210902svol.pdf21/09/02ase_210902.pdfase_210902svol.pdfase_210902.pdfase_210902svol.pdfase_210902.pdfase_210902svol.pdf 07/01/03ase_070103.pdfase_070103svol.pdf07/01/03ase_070103.pdfase_070103svol.pdfase_070103.pdfase_070103svol.pdfase_070103.pdfase_070103svol.pdf 27/01/03ase_270103.pdfase_270103svol.pdf27/01/03ase_270103.pdfase_270103svol.pdfase_270103.pdfase_270103svol.pdfase_270103.pdfase_270103svol.pdf 08/02/03ase_080203.pdfase_080203svol.pdf08/02/03ase_080203.pdfase_080203svol.pdfase_080203.pdfase_080203svol.pdfase_080203.pdfase_080203svol.pdf 06/06/03ase_060603.pdf06/06/03ase_060603.pdf ase_060603.pdf 26/06/03ase_260603.pdf26/06/03ase_260603.pdf ase_260603.pdf 17/07/03ase_170703.pdfase_170703svol.pdf17/07/03ase_170703.pdfase_170703svol.pdfase_170703.pdfase_170703svol.pdfase_170703.pdfase_170703svol.pdf

30 A.S.E.6.30 Riferimenti3 http://vlsi.iet.unipi.it/corsi/ASE/http://vlsi.iet.unipi.it/corsi/ASE/http://vlsi.iet.unipi.it/corsi/ASE/ ArchivioArchivio Lezioni anni precedentiLezioni anni precedenti AnnoLezioniProgrammaAnnoLezioniProgramma 2002 lezioni_2002programma_ 20022002 lezioni_2002programma_ 2002lezioni_2002programma_ 2002lezioni_2002programma_ 2002


Scaricare ppt "A.S.E.6.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 6 Algebra BOOLEANA Sistema matematico formaleSistema matematico formale Elementi, operazioni,"

Presentazioni simili


Annunci Google