Scaricare la presentazione
La presentazione è in caricamento. Aspetta per favore
1
La matematica per risolvere problemi reali
I Modelli Matematici Liceo scientifico “G. Mercalli” Napoli Armando Camerlingo Francesco Paolo Ducci Federico Fazioli Giuseppe Fusco Luigi Mosanghini Ettore Saetta La matematica per risolvere problemi reali
2
Introduzione Un modello matematico è una rappresentazione esemplificativa di un sistema reale, in cui vengono schematizzate le caratteristiche che interessa studiare, tramite una serie di regole (in generale un sistema di Equazioni Algebriche o Differenziali) che legano i parametri (grandezze non manipolabili), le sollecitazioni (ovvero gli ingressi, variabili indipendenti) e le uscite (variabili dipendenti).
3
Il principio di INDUZIONE
Il principio d'induzione è un enunciato sui numeri naturali che in matematica trova un ampio impiego nelle dimostrazioni. L'idea intuitiva con cui si può comprendere il senso dell'enunciato è quella di un "effetto domino": affinché le tessere da domino disposte lungo una fila cadano tutte sono sufficienti due condizioni: che cada la prima tessera che ogni tessera sia posizionata in modo tale che cadendo provochi la caduta della successiva. Il principio d'induzione estende questa idea al caso in cui la fila è composta da infinite tessere.
4
Definizione del principio di induzione
Se una proprietà P(n) dipendente da una variabile intera n vale per n = 1 e se, per ogni n N vale P (n) → P (n + 1) allora P vale su tutto N
5
Applicazione in biologia
Negli ultimi anni i modelli matematici sono stati adoperati anche nel campo biologico ed in particolare nello studio della crescita dei batteri.
6
Nel nostro esempio analizzeremo il batterio E. Coli
Nel nostro esempio analizzeremo il batterio E. Coli. Esso si divide ogni 20 minuti. Quindi, esso deve sintetizzare (duplicare) tutti I suoi componenti cellulari entro questo tempo.
7
Fasi della divisione dell’E. Coli
Fase di latenza (lag phase) Fase di crescita esponenziale (exponential fase) Fase stazionaria (stationary phase) Fase di morte (death fase)
8
Proprietà della crescita
In intervalli temporali di uguale lunghezza il numero di batteri aumenta di uguale fattore. All'inizio la colonia è composta da 1000 batteri. Dopo 20 minuti il numero di batteri è raddoppiato.
9
1000 × 2t batteri. All'inizio (t0) ci sono 1000 = 1000 × 20 batteri.
Dopo 20 min il numero di batteri è raddoppiato, quindi 1000 × 21 batteri. Dopo 40 min il loro numero è aumentato nuovamente di fattore 2, cioè ci sono 1000 × 22 batteri. Dopo 1 ora ci sono1000 × 23 batteri. Continuiamo a piacere con questo ragionamento e vediamo che dopo t 20 min la colonia consiste in 1000 × 2t batteri.
10
Questo modello (crescita esponenziale) viene chiamato anche modello di Malthus. Viene utilizzato per descrivere la crescita di una popolazione isolata, con infinite risorse. N(t) = N0(1+r)t N0 = 1000 ; r = 1 (perché i batteri raddoppiano) quindi N(t) = 1000x2t
11
N(t) = 1000 x 2t Tempo (min) N di batteri 1000 20 2000 40 4000 60 8000
1000 20 2000 40 4000 60 8000 80 16000 100 32000 120 64000
12
Crescita in un qualsiasi intervallo di tempo
Con il modello ipotizzato precedentemente, possiamo calcolare il numero di batteri dopo ogni intervallo di tempo di 20 min (detto “passo”), ma come facciamo a calcolare il numero di batteri in un qualsiasi intervallo di tempo ?
13
Dopo 10 min i batteri saranno aumentati di un fattore di crescita q
Dopo 10 min i batteri saranno aumentati di un fattore di crescita q. Dopo altri 10 minuti i batteri saranno aumentati di nuovo di un fattore q, quindi il loro numero sarà uguale a 1000q2, che sappiamo uguale a 1000 x 2 visto che sono trascorsi 20 minuti in totale. Quindi : q2 = 2 q = √2 √2 è uguale a 21/2 La legge N(t) = 1000 x 2t risulta quindi valida per qualsiasi intervallo di tempo
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.