Scaricare la presentazione
La presentazione è in caricamento. Aspetta per favore
PubblicatoNorma Ferro Modificato 10 anni fa
1
Verso una misura dellangolo presso le B-factories B DK B D(*) B D(*)a 1
2
2 (1,0) (, ) (0,0) 1 Fase complessa Il Triangolo di Unitarietà Nel Modello Standard la violazione di CP è descritta dalla presenza di una fase complessa nella matrice CKM che descrive il mixing dei quark: Il Modello Standard prevede che V CKM sia unitaria, da cui la relazione triangolare (nel piano complesso): sin( c )=0.22 A ~ 0.85 Parametrizzazione di Wolfenstein
3
3 Media mondiale (~ BaBar + Belle): sin2 = 0.734 0.055 (84% CL) Limiti sulle lunghezze dei lati da mixing nei B, Vub e Vcb, violazione di CP nei mesoni K Angoli e non ancora misurati. Il fit globale (assumendo MS) dà: sin(2 )=-0.13 +0.28/-0.23 = 64.5°+7.5°/-6.5° Le misure sono fra loro consistenti e compatibili col Modello Standard. Le nostre conoscenze attuali Per mettere ulteriormente alla prova il MS col meccanismo CKM è necessario misurare gli altri 2 angoli. Deviazioni significative dai valori fittati nel MS per (es: ~140°) possono aver luogo in presenza di nuova fisica (tipo SUSY)
4
4 Misura di alle B-factories La misura di alle B-factories viene condotta cercando gli effetti dellinterferenza tra processi b cu bar s e processi b uc bar s (la fase debole relativa, introdotta da V ub, è Sono quindi processi B D(*)X, X non charmato. Non sono presenti diagrammi a pinguino, che complicano invece, nel caso di, lestrazione della fase debole dalle asimmetrie misurate. Essendo V ub ~ 3, gli effetti da misurare sono piccoli ed è necessaria una elevata statistica, accessibile alle B-factories (oggi: ~100M coppie BBbar sia a Belle che a BaBar, ~500M tra ~3 anni) Esistono numerose variazioni di essenzialmente 2 tecniche: Misure di processi B ± D(*)X (violazione di CP nel decadimento) Misure di processi B 0 /B 0 bar D(*)X (violazione di CP nellinterferenza tra decadimento e mixing) 2 + (2 dal mixing B 0 -B 0 bar)
5
5 da B D 0 K (Gronau, Wyler, London) Determina sin 2 senza incertezze teoriche misurando i moduli di 6 ampiezze: A(B ± D 0 K ± ), A(B ± D 0 K ± ), A(B ± D 0 CP K ± ) La sensibilità dipende dal rapporto Impraticabile se r << 1 PROBLEMA: A(B + D 0 K + ) non può essere misurata nei decadimenti adronici: Interferenza O(1) con B + D 0 K + seguito da decadimento doppio Cabibbo soppresso del D 0 b u u S W u c B+B+ D0D0 K+K+ Color suppressed b uu c W s u B+B+ D0D0 K+K+ Color favored
6
6 da B D 0 (CP) K Metodo GLW modificato: misurando BR(B - D 0 K - ), BR(B - D 0 CP± K - ), A CP± (B - D 0 CP± K - ): Vincoli su r e dalla misura del doppio rapporto: Metodo alternativo (ADS: Atwood, Dunietz, Soni): richiede di ricostruire B - [f]K - e B + [f]K + dove f è un canale per cui BR(D 0 f)<<BR(D 0 bar) (es: K + -, K + - - +, K + 0 ) Il numero di eventi aspettato sulla statistica attuale è basso (poche unità per ogni modo) e il fondo va studiato con cura non ancora ricostruiti (ma in programma sia per BaBar che per Belle). Alcune ambiguità discrete ( -,, + ) 3 misure indipendenti x 3 incognite ( = differenza fasi forti B + D 0 K + e B - D 0 K - )
7
7 input value (sin 2 sin 2 da B D 0 K (GLW): stato e prospettive B - D 0 K - B + D 0 K + D 0 K – + CP=-1 CP=+1 D 0 KK, (CP=+1) Belle (84M B ± ): ~50 eventi A CP+ = 0.06 ± 0.19 ± 0.04 R + = 1.21 ± 0.25 ± 0.14 BaBar (89M B ± ): ~70 eventi A CP+ = 0.07 ± 0.17 ± 0.06 R + = 1.21 ± 0.21 D 0 Ks (CP=-1) Belle (84M B ± ): ~50 eventi A CP- = -0.18 ± 0.17± 0.05 R - = 1.41 ± 0.27 ± 0.15 BaBar, 0.5 ab -1 Dominati dallincertezza statistica Nessuna informazione su Proiezione ad alta luminosità dipende da r. Con r=0.3 BaBar stima una sensibilità a di 10 a 500 fb -1 e di 7.5 a 2 ab -1 (5 apportando miglioramenti al rivelatore)
8
8 da B D 0 K * Metodo analogo a B D 0 K Simile sensibilità a a parità di campione (# eventi di segnale) Facciamo un confronto: B D 0 K *, D 0 K - : 52 ± 8 eventi in 60 fb -1 (Belle) B D 0 K, D 0 K - : 360 ± 21 eventi in 56 fb -1 (BaBar) Quindi a parità di statistica il campione D 0 K * è 6-7 volte più piccolo di quello di D 0 K sensibilità a inferiore a parità di statistica D 0 D0KD0K D 0 K D 0 K K, K
9
9 Estrazione di attraverso una costruzione triangolare analoga a quella di B D 0 K (tipo GLW originale) Rispetto a B D 0 K: Diagrammi di Feynman entrambi color-allowed, stesso ordine 3 ampiezze confrontabili, maggiore interferenza. La fase forte può variare nel Dalitz plot, consentendo di risolvere alcune ambiguità su (ma non quella + ) Bisogna conoscere il Dalitz plot, e il fondo è elevato (ma si può pensare di integrare sul Dalitz plot, rinunciando a risolvere le ambiguità del punto precedente) BR(D 0 K 0 non-risonante) non è ancora stato misurato e potrebbe essere troppo piccolo per avere una interferenza apprezzabile... Attualmente in fase di studio in BaBar. Assumendo BR(D 0 K 0 non-risonante)=BR(D 0 K *,K* K 0 ) attesi ~700 eventi in 100fb -1, ~13° a 500 fb -1 da B D 0 K 0 (Aleksan, Petersen, Soffer) W K+K+ D0D0 B+B+ W D0D0 K+K+ B+B+ b->c quark transition b->u quark transition
10
10 Estrazione di 2 + attraverso unanalisi alla sin2 dellevoluzione temporale dei decadimenti di B neutri in D (*) K (*)0 Pro/contro analoghi a B D 0 K 0 : Diagrammi di Feynman di entrambi i processi sono color-allowed, stesso ordine 3 interferenza significativa, ampiezze confrontabili La fase forte può variare nel Dalitz plot, consentendo di risolvere alcune ambiguità su (ma non quella + ) Bisogna conoscere il Dalitz plot (ma anche in questo caso si può integrare...) BR non-risonante non ancora misurato, linterferenza può essere troppo piccola Attualmente in BaBar è sotto studio sia la sensibilità del metodo a 2 + che la ricostruzione di questi modi di decadimento. 2 + da B 0 (t) D (*) K (*)0 (Aleksan, Petersen, Soffer)
11
11 Sin(2 + ) da B 0 (t) D (*) (Sachs, Dunietz) 4 stati finali: D + -, D - +, D *+ -, D *- +, non autostati di CP, accessibili sia a B 0 che a B 0 bar, ma unampiezza è doppio Cabibbo soppressa interferenza piccola A CP ~ 2% Analisi alla sin(2 ): un B neutro completamente ricostruito (Breco) in D (*) e un B parzialmente ricostruito (Btag) per identificare il flavor. Studio dellevoluzione temporale (in funzione di t) dei decadimenti Breco D (*)+ - e D (*)- + quando Btag=B 0,B 0 bar: Nel Modello Standard: quindi, in linea di principio, studiando levoluzione temporale di B 0 /B 0 bar f i, i=1..4, è possibile determinare | D(*) |, (*), sin(2 + ) f i, i=1..4: i 4 stati finali +/-: B tag = B 0 /B 0 bar
12
12 Sin(2 + ) da B 0 (t) D (*) difficoltà sperimentali | (*) | molto piccolo: riduce la sensibilità a 2 +, va inserito come input esterno...... ma il modo più ovvio per misurarlo, da BR(B 0 D (*)+ - )/BR(B 0 D (*)- + ), non funziona (BR~10 -6, dominato dai fondi)...... viene stimato da BR(B 0 D s (*) ) (assumendo fattorizzazione x gli effetti di rottura di SU(3)): Violazione di CP sul lato di tag: modifica le distribuzioni temporali, essenzialmente introducendo un termine aggiuntivo nel coefficiente del seno. Parametri aggiuntivi nel fit, riduce la sensibilità a sin(2 + ) |A(B 0 D (*)+ - )| |A(B 0 D (*)- + )| | D(*) | | (*) | ~0.02 d c d B D s D b u s,ds,d Con un 30% conservativo di incertezza teorica: | D | = 0.021 0.005 0.006 | D* | = 0.017 0.006 0.005 D s BaBar:
13
13 Attualmente solo BaBar: Analisi in corso su 82fb -1, non ancora conclusa ~5200 D e ~4750 D * ricostruiti con B tag associato Fondi peaking accuratamente studiati Tecnica di fit studiata nel dettaglio, molti controlli effettuati. Sensibilità attesa: (sin(2 + )) ~ 0.6 (stat.) 0.3 (syst.) Risultato previsto a breve Proiezione della sensibilità: a 1 ab -1 (sin(2 + )) ~ 0.2 (stat.) 0.2 (syst.) Sin(2 + ) da B 0 (t) D (*) stato e prospettive
14
14 Sin(2 + ) da B 0 (t) D (*) (London, Sinha, Sinha) Stesso principio di B 0 (t) D (*) : analisi dipendente dal tempo alla sin(2 ) In più, nel caso di D * : diversi possibili stati di elicità, correlazioni angolari (VV) maggior numero di osservabili consente di estrarre sin(2 + ) senza dover conoscere | | (che può anzi essere fittato) In questo modo lincertezza sistematica è decisamente inferiore rispetto a D * (SU(3) + fattorizzazione) Inoltre se | (D * )| fosse misurato, potrebbe essere usato per stimare | (D * )| senza dover ricorrere a SU(3) migliore sensibilità a sin(2 + ) in D * Nessun risultato attualmente per BaBar/Belle Stima preliminare: ~5000 D * completamente ricostruiti nel data sample 1999-2002 di BaBar (82 fb -1 ), (sin(2 + ))~0.35 su 100fb -1
15
15 Sin(2 + ) da B 0 (t) D (*) a 1 (1260) Metodo analogo a D (*) : analisi dipendente dal tempo alla sin(2 ) (+ correlazioni angolari se D*) In D * (VV) rimane unambiguità di segno in sin(2 + ); D * a 1 (VA) risolve questa ambiguità BaBar: sotto studio la ricostruzione completa di D (*) a 1 Per iniziare, analisi basata su tagli e integrata nel tempo Su 57 fb -1 D *- D 0 -, D 0 K - +, K - + + -, K - + 0 ; D - K + - -, Ks -; a 1 0 -, 0 + - Yield (segnale + peaking background) da fit (argus + Gauss) a m ES del candidato B (dopo aver richiesto | E|<2.5 (12-15 MeV, dipende dal modo) Sottrazione del fondo peaking ( 0 - e + - - non risonante): la frazione di fondo è stimata da un fit (BW + polinomio) a m( ) Lanalisi è quasi completamente finalizzata. Ci si attende: B/B(D*a 1 ) = 3.4% 8.6% (cfr PDG 2002: 21%) B/B(Da 1 ) = 3.0% 9.5% (cfr PDG 2002: 55%) ~3000 eventi D*a 1, ~1500 eventi Da 1 (usando MC e da PDG2002) Statistica simile a D * D (ma va ridotta per tag ~60%) simile sensibilità a sin(2 + ) Belle: nessun risultato finora.
16
16 Analisi analoga a quella con eventi completamente ricostruiti: fit alla distribuzione temporale dei decadimenti B 0 D*F (F =,, a 1 ) quando laltro B è un B tag Differenza: i decadimenti B 0 D*F, D* s - D 0 sono parzialmente ricostruiti: Un oggetto veloce F viene combinato con un pione soffice Sfruttando i vincoli cinematici (conservazione del 4-impulso, conoscenza dello stato iniziale) è possibile calcolare la massa mancante La massa mancante picca a m(D 0 ) per il segnale e consente di distinguere tra segnale e fondo Il D 0 non ricostruito dà particelle extra usate per migliorare la risoluzione sul vertice e ridurre il fondo Vantaggi e svantaggi rispetto alla ricostruzione completa: Maggiore statistica (+) Maggiore fondo (-) Separazione tra i vertici peggiore (-) Nel caso di D*, D*a 1 non si può fare lanalisi angolare. In tutti e tre i casi | | va inserito come input esterno. (-) Sin(2 + ) da D *, D *, D * a 1 parzialmente ricostruite F s - D0D0 P( s - )<250 MeV E(F)~.5 m B
17
17 D *, D * D * a 1 parzialmente ricostruite La ricostruzione parziale funziona e la separazione tra i vertici è misurabile con sufficiente accuratezza: BaBar, misura della vita media del B0 con eventi D*, D* parzialmente ricostruiti: B = 1.533 ± 0.034 ± 0.038 (20.7 fb-1, 6970 ± 240 D*, 5520 ± 250 D* ) Studio della sensibilità a sin(2 + ) in corso: con la statistica attuale ci si aspetta (sin(2 + )) ~0.5, ma non è ancora stato valutato il contributo dovuto ai decadimenti doppio Cabibbo soppressi nel lato di tag. Inoltre va valutato come la sensibilità scala con la statistica (le incertezze sistematiche possono risultare dominanti, rispetto al caso di ricostruzione completa). La misura è in corso. D*
18
18 Conclusioni Molti metodi sono stati sviluppati negli ultimi anni per la misura di o 2 + alle B-factories (e altri ancora sono in fase di studio/messa a punto) Questi metodi sono essenzialmente privi di incertezze teoriche (a parte SU(3)+fattorizzazione in alcuni casi), a differenza dei metodi per La limitazione principale è la statistica...... ma nei prossimi anni fortunatamente assisteremo ad un significativo aumento del campione di Belle e BaBar (0.5 ab -1 in pochi anni, poi verso 1-2 ab -1 ). In questo modo dovrebbe essere possibile determinare a meno di ~10°. Errori anche maggiori sarebbero sufficienti per dare evidenza di nuova fisica se si trovasse >90°. La ridondanza sarà molto utile per ridurre le ambiguità discrete e verificare la consistenza delle diverse misure.
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.