Scaricare la presentazione
La presentazione è in caricamento. Aspetta per favore
PubblicatoSansone Ferrante Modificato 11 anni fa
1
1 laboratorio di calcolo II AA 2003/04 a cura di Domizia Orestano Dipartimento di Fisica Stanza 159 - tel. (06 5517) 7281 www.fis.uniroma3.it/~orestano orestano@fis.uniroma3.it UNIVERSITA DEGLI STUDI ROMA TRE DIPARTIMENTO DI FISICA E. AMALDI
2
2 Introduzione: obiettivi del corso Introduzione alla Programmazione ad Oggetti Accento posto sulle Idee e non sugli aspetti tecnici Architetti e non Esperti del Linguaggio C/C++ Imparare a progettare un approccio al Calcolo Restano fuori Elementi di Analisi Numerica Aspetti di Grafica o di Tecnologie Multimediali
3
3 Introduzione: organizzazione del corso Contenuti 1.Introduzione al linguaggio C++ e alla Programmazione ad Oggetti 2.Elementi di linguaggio UML 3.Elementi di strutture riutilizzabili Metodo 1.Comprensione del problema, ricerca della soluzione in ambito OO, implementazione in C++ 2.Lezioni Frontali (circa 40%) e Laboratorio (circa 60%) 3.Utilizzo di un problema guida (Sistema Solare) 4.Sintassi in Appendice a ciascuna lezione
4
4 Introduzione: orario del corso 10 o 11 lezioni frontali da 2 ore –0.5 - Introduzione –8.5 - Linguaggio C++ –1.5 - UML e strutture riutilizzabili –0.5 - Conclusione Si svolgeranno il lunedì dalle 14 alle 16 9 o 10 esercitazioni di laboratorio da 4 ore Si svolgeranno presso i laboratorio didattici il martedì (studenti del II anno) e il giovedì (studenti del I anno) dalle 9 alle 13 Indicativamente... Abbiamo 10 settimane
5
5 Introduzione: strumenti di lavoro Dispense Esercitazioni di Laboratorio (in gruppi di 2 persone) Manuale C++ –Come riferimento per la sintassi –Attenzione allimpostazione (partiamo direttamente dal C++, e non dal C!) –Alcuni suggerimenti nella prossima trasparenza Presenza attiva in Laboratorio e in Aula
6
6 Introduzione: manuali (1)
7
7 Introduzione: manuali (2)
8
8 Introduzione: svolgimento degli esami Prova Pratica –Prova in Laboratorio, in linguaggio C++ Prova Orale Discussione su un problema scelto dallo studente e preparato personalmente durante il corso –Ogni studente sceglie un problema di Fisica (semplice!) concordato o suggerito dal docente –Lo formalizza nella logica della programmazione ad oggetti –Lo scrive in C++ e lo discute nel corso della Prova Orale
9
9 Problematiche del calcolo moderno Applicazione del calcolo a sistemi sempre più complessi per quantità di dati da manipolare, numero di CPU utilizzate, distribuzione geografica dei soggetti coinvolti Esempi: esperimenti di fisica delle alte energie e di astroparticelle, biologia molecolare e progetto genoma, ma anche telecomunicazioni, sistemi bancari, reti di trasporto.
10
10 Requisiti per il software moderno 1.Robustezza protezioni nellaccesso ai dati 2.Possibilità di ri-utilizzo del codice 1.economia di risorse umane ed economiche 2.maggiore affidabilità 3.Portabilità 1.verso sistemi operativi diversi 2.verso diverse versioni di uno stesso sistema 4.Flessibilità e Organizzazione del Codice semplicità di gestione e sviluppo successivo del codice
11
11 Paradigmi di programmazione Procedurale: si sceglie lalgoritmo che risolva il problema dato e il linguaggio permette di implementare l'algoritmo scelto Modulare: si decide quali moduli utilizzare e si separano i dati in modo da nasconderli entro ciascun modulo Definita dallutente: si decide quali tipi utilizzare e si genera un insieme di operazioni per i vari tipi Orientata agli Oggetti: si decide quali classi utilizzare, si genera un insieme di operazioni per le varie classi e si raggruppano le proprietà comuni tramite il meccanismo dell'ereditarietà Generica: si identificano una serie di algoritmi e si parametrizzano in modo che possano essere utilizzati per più classi o tipi definiti dall'utente.
12
12 Paradigmi e linguaggi di programmazione I diversi linguaggi di programmazione possono essere più o meno indicati ad esprimere un tipo di programmazione (paradigma). Il C++ permette di implementare una programmazione definita dall'utente, consentendo la definizione di tipi di oggetti e delle operazioni effettuabili con essi, con possibilità di mettere in evidenza i collegamenti e le similitudini tra di essi mediante il meccanismo dellereditarietà (ovvero una programmazione Orientata agli Oggetti) ma consente anche di realizzare una programmazione Generica, creando codice utilizzabile in situazioni formalmente simili anche in assenza di un collegamento concettuale.
13
13 Caratteristiche della programmazione OO 1.Incapsulamento : i dati delloggetto sono nascosti ad altri oggetti ed è possibile accedervi solo attraverso modalita ben definite Da questa caratteristica derivano robustezza e flessibilità del codice 2.Ereditarietà : gli oggetti complessi possono essere costruiti a partire da oggetti più semplici. Gli oggetti complessi derivano tutto o parte del loro comportamento dagli oggetti a partire dai quali sono stati generati Ne derivano ri-utilizzabilità e possibilità di organizzazione del codice 3.Polimorfismo: oggetti simili possono essere trattati, in alcuni casi, come se fossero dello stesso tipo, senza la necessità di implementare trattamenti specifici per distinguere tra le varie tipologie Rende il codice più flessibile e aumenta lefficienza dellereditarietà La Portabilità invece è una caratteristica del linguaggio ed in particolare del C++ standard (ANSi-C++)
14
14 Progettazione di un programma Scelta degli Oggetti Identificazione delle relazioni tra gli Oggetti (proprietà statiche o geometriche) Esame dei casi duso (use case) Identificazione delle interazioni tra gli Oggetti (proprietà dinamiche) Eventuale ridefinizione delle responsabilita delle classi NB gli Oggetti vengono descritti mediante classi, ovvero tipi definiti dallutente che realizzano lincapsulamento dei dati
15
15 La simulazione del Sistema Solare F 12 = m a F 12 = - G m 1 m 2 r / r 3 G = 6.673e-11 Unità mks Il problema fisico: Determinare levoluzione temporale di un certo numero di corpi sottoposti a reciproca attrazione gravitazionale
16
16 Scelta degli Oggetti Quali Oggetti entrano nel problema? corpi celesti, sonde, pianeti, stelle, satelliti … Quali proprieta hanno tali oggetti? massa, posizione, velocità…
17
17 Relazioni tra gli Oggetti Quali sono le relazioni tra gli Oggetti? Possono essere raggruppati? Quali proprieta sono condivise da Oggetti simili? Quali proprieta permettono di distinguere Oggetti simili tra loro? un pianeta è un corpo celeste, una sonda è un satellite… … ed è anche un corpo celeste tutti gli oggetti possono essere ricondotti a Corpi Celesti o a Sonde, dove la Sonda è un Corpo Celeste con qualche proprietà in più Quali oggetti sono superflui? Quali oggetti mancano? manca il Sistema Solare … e un Sistema Solare è composto da dei Corpi Celesti!
18
18 UMLUML Universal Modeling Language
19
19 Casi duso A cosa serve esattamente il programma? simulazione del moto dei vari Corpi Celesti inseriti nel Sistema Solare In quali situazioni concrete tali oggetti dovranno essere utilizzati? 1.Si vuole conoscere lo stato del sistema (posizione di ciascun Corpo Celeste) dopo un tempo T dallistante iniziale 2.Si suddivide lintervallo T in n intervallini dT nei quali si possano trascurare variazioni di forza e di velocità 3.Per ogni intervallo dT 1.Nota la posizione di ciascun Corpo Celeste allinizio dellintervallo 2.La si usa per determinare la forza agente su ciascun Corpo Celeste 3.Nota la forza si determina laccelerazione di ogni Corpo Celeste 4.Si calcola la velocità del Corpo Celeste, nota la velocità allinizio dellintervallo, assumendo che laccelerazione resti costante 5.Si calcola la nuova posizione, assumendo che la velocità resti costante
20
20 Scenari Oltre ai casi duso si possono introdurre gli scenari. Questi descrivono in maniera piu dettagliata situazioni particolari che possono presentarsi e devono essere previste dal programma. Nel nostro caso possiamo ad esempio prevedere di voler lanciare una sonda dalla superficie di un altro Corpo Celeste X ad un istante t compreso tra 0 e T. Il programma dovrà allora anche controllare quando si raggiunga il tempo t e aggiungere al Sistema Solare un Oggetto Sonda con una certa velocità iniziale rispetto al Corpo Celeste X, assegnandole la posizione di X ed una velocità ottenuta dalla combinazione della velocità iniziale relativa della Sonda rispetto a X e della velocità del Corpo Celeste X.
21
21 Interazioni tra gli Oggetti Non è sufficiente capire la relazione geometrica tra gli oggetti, è necessario anche valutare come gli oggetti interagiscono dinamicamente tra loro Quali compiti ha ciascuna classe? Chi determina le nuove coordinate del sistema? Chi invoca i metodi per far evolvere il sistema? Una possibile scelta: CorpoCeleste ha il metodo CalcolaPosizione SistemaSolare ha il metodo Evolvi che determina il nuovo stato del sistema dopo un tempo T Il metodo Evolvi (di SistemaSolare) si occupa di invocare i metodi CalcolaPosizione di ciascun pianeta del sistema solare.
22
22 Responsabilità delle classi è chiaro di chi sia la responsabilita di un punto chiave del programma? Una classe ha troppe responsabilita? Una classe è irrilevante e può essere assorbita da unaltra? Distribuire le responsabilità tra le varie classi Sfruttare un procedimento a cascata Limitare le responsabilità di una classe ad una o due
23
23 Interaction Diagram (semplificato)
24
24 Sessione CRC CRC: Classi, Responsabilità, Collaborazione capire come funziona dinamicamente il programma che si vuole realizzare Giuoco di Ruolo: ciascuno dei partecipanti è un Oggetto del programma uno dei partecipanti è il Programma "Main Ogni partecipante deve conoscere le caratteristiche di ciascuna Classe: "come è fatta" "quali azionì può compiere Durante la sessione tutto si svolge come nel corso dell'esecuzione del Programma, in questo modo emergono casi non previsti ed eventuali problemi.
25
25 Costruzione di una classe Get 1.Attributi public private protected 2.Metodi public private protected Obbligatorio il tipo (nessun tipo void ) 3.Accesso agli attributi di una classe (tipo Set e tipo Get) Nome Classe Attributi Metodi Set
26
26 Nomeclasse.h Contiene la dichiarazione degli Attributi e dei Metodi CorpoCeleste Nome (stringa) m (num. reale) x (num. reale) y (num. reale) vx (num. reale) vy (num. reale) CalcolaPosizione(forza, dt) StampaVelocita() StampaPosizione() M() X() Y() Vx() Vy() La dichiarazione di una classe: lheader file (.h)
27
27 Limplementazione di una Classe: limplementation file (.cc) Nomeclasse.cc Contiene limplementazione degli Attributi e dei Metodi
28
28 #ifndef CORPOCELESTE_H #define CORPOCELESTE_H class CorpoCeleste { private: char *Nome; double m; double x; double y; double vx; double vy; public: CorpoCeleste() ; CorpoCeleste (const char *nomeCorpo, float mass, float xpos, float ypos, float vxi, float vyi); ~CorpoCeleste() ; void calcolaPosizione (float fx, float fy, float t); void stampaPosizione(); void stampaVelocita() ; const char *nome() ; double M() ; double X() ; double Y() ; double Vx() ; double Vy() ; }; #endif CorpoCeleste.h
29
29 #ifndef CORPOCELESTE_H #define CORPOCELESTE_H class CorpoCeleste { protected: char *Nome; double m; double x; double y; double vx; double vy; public: CorpoCeleste() ; CorpoCeleste (const char *nomeCorpo, float mass, float xpos, float ypos, float vxi, float vyi); ~CorpoCeleste() ; virtual void calcolaPosizione (float fx, float fy, float t); void stampaPosizione(); void stampaVelocita() ; const char *nome() ; double M() ; double X() ; double Y() ; double Vx() ; double Vy() ; }; #endif CorpoCeleste.h con modifiche per ereditarietà
30
30 #include "CorpoCeleste.h CorpoCeleste::CorpoCeleste( ) { } CorpoCeleste::CorpoCeleste (const char *nomeCorpo, float mass, float xpos, float ypos, float vxi, float vyi) { } CorpoCeleste::~CorpoCeleste() { } void CorpoCeleste::calcolaPosizione (float fx, float fy, float t) { } void CorpoCeleste::stampaPosizione() { } void CorpoCeleste::stampaVelocita() { } const char* CorpoCeleste::nome() { } double CorpoCeleste::M() { } double CorpoCeleste::X() { } double CorpoCeleste::Y() { } double CorpoCeleste::Vx() { } double CorpoCeleste::Vy() { } CorpoCeleste.cc Schema vuoto
31
31 #include "CorpoCeleste.h" #include CorpoCeleste::CorpoCeleste() { } CorpoCeleste::CorpoCeleste (const char *nomeCorpo, float mass, float xpos, float ypos, float vxi, float vyi) { Nome = new char[strlen(nomeCorpo)]; strcpy(Nome, nomeCorpo); m = mass; x = xpos; y = ypos; vx = vxi; vy = vyi; } void CorpoCeleste::calcolaPosizione( float fx, float fy, float t) { double ax = fx/m; double ay = fy/m; vx += ax*t; vy += ay*t; x += vx*t; y += vy*t; } CorpoCeleste.cc Prima parte
32
32 void CorpoCeleste::stampaPosizione() { cout.setf(ios::fixed); cout.setf(ios::showpos); cout << " " << setprecision(4) << setw(9) << x*1.e-11 << " " << setprecision(4) << setw(9) << y*1e-11 ; } void CorpoCeleste::stampaVelocita() { cout.setf(ios::fixed); cout.setf(ios::showpos); cout << " " << vx << " " << vy ; } CorpoCeleste::~CorpoCeleste() { } const char* CorpoCeleste::nome() {return Nome; } double CorpoCeleste::M() { return m; } double CorpoCeleste::X() { return x; } double CorpoCeleste::Y() {return y; } double CorpoCeleste::Vx() {return vx; } double CorpoCeleste::Vy() {return vy; } CorpoCeleste.cc Seconda parte
33
33 #ifndef CORPOCELESTE_H #define CORPOCELESTE_H class CorpoCeleste { protected: char *Nome; double m; double x; double y; double vx; double vy; public: CorpoCeleste() ; CorpoCeleste (const char *nomeCorpo, float mass, float xpos, float ypos, float vxi, float vyi); ~CorpoCeleste() { } ; virtual void calcolaPosizione (float fx, float fy, float t); void stampaPosizione(); void stampaVelocita(); const char *nome() {return Nome;}; double M() {return m;}; double X() {return x;}; double Y() {return y;}; double Vx() {return vx;}; double Vy() {return vy;}; }; #endif CorpoCeleste.h con impletazione di alcuni metodi inline
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.