La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Le trasformazioni del piano

Presentazioni simili


Presentazione sul tema: "Le trasformazioni del piano"— Transcript della presentazione:

1 Le trasformazioni del piano

2 Le Trasformazioni Geometriche
Vogliamo conoscere le relazioni che sussistono tra gli oggetti geometrici quando subiscono trasformazioni Si chiama trasformazione geometrica una corrispondenza biunivoca che associa punti di un piano a punti dello stesso piano

3 T R A S F O M Z I N

4 La trasformazione identica o identità è quella che associa ad ogni punto se stesso
Si dice involutoria una trasformazione che, applicata due volte, coincide con la trasformazione identica Si chiamano invarianti le caratteristiche che rimangono inalterate Varianti le caratteristiche che si modificano Elementi uniti gli elementi che hanno per trasformati se stessi

5 Invarianti Le principali caratteristiche che una trasformazione può lasciare invariate sono: La Lunghezza dei segmenti L’ampiezza degli angoli Il parallelismo Le direzioni Il rapporto tra i segmenti L’orientamento dei punti del piano

6 Trasformazioni geometriche
Si possono suddividere in tre categorie: Trasformazioni che si ottengono mediante deformazioni (esempio: disegno su tela elastica) Trasformazioni che si ottengono per proiezioni (esempio: ombra di un oggetto) Trasformazioni che si ottengono mediante movimenti (esempio: immagine riflessa)

7 La figura rappresenta un’incisione di M.C.Escher (1898-1972).
Essa fornisce un esempio di riflessione sulla sfera; è interessante notare che le linee rette degli spigoli della stanza dove si trova l’artista sono diventate linee curve.

8 Classificazione delle trasformazioni basata sugli invarianti

9 modelli di trasformazione nel PIANO
le trasformazioni modelli di trasformazione nel PIANO omeomorfismi proiettività affinità omotetia isometria identità Le classificazioni rappresentate nello schema sono via via più restrittive. Vengono identificate in base a numero e tipo di proprietà mantenute dalle figure dopo una trasformazione.

10 TOPOLOGIA Esistono altre trasformazioni che non portano rette in rette: deformazioni continue che conservano le “intersezioni”. I ponti di Königsberg

11 OMEOMORFISMI Gli omeomorfismi, detti anche trasformazioni topologiche, conservano la continuità A curve chiuse corrispondono curve chiuse A curve aperte corrispondono curve aperte A curve intrecciate corrispondono curve intrecciate con lo stesso numero di nodi( i punti in cui le curve intersecano se stesse ) Se un punto è intersezione di due curve, il punto che gli corrisponde risulta intersezione delle curve corrispondenti Una tazza ed una ciambella sono omeomorfi. Dalla "deformazione senza strappi" mostrata in figura si può infatti costruire un omeomorfismo fra i due oggetti.

12 le trasformazioni proiettività
La proiettività avviene mediante delle proiezioni a partire da un punto detto "centro di proiezione". Un esempio noto di proiettività è l’ombra di un oggetto sottoposto a una lampadina, fonte di luce relativamente vicina a noi.

13 le trasformazioni proiettività
La proiettività avviene mediante delle proiezioni a partire da un punto detto "centro di proiezione". Un esempio noto di proiettività è l’ombra di un oggetto sottoposto a una lampadina, fonte di luce relativamente vicina a noi. Notiamo che l’ombra del tavolo provocata dalla lampadina è deformata rispetto alla figura di partenza: mantiene solo l’allineamento dei punti delle rette e la convessità (o la concavità) della figura

14 le trasformazioni affinità
Le trasformazioni affini sono particolari proiettività che mantengono anche il parallelismo tra rette. Se consideriamo ancora l’esempio comune dell’ombra, un’affinità è una trasformazione che può derivare da una fonte di luce molto lontana, tendente all’infinito, come il sole, i cui raggi sembrano essere paralleli tra loro.

15 OMBRE: AFFINITA’ e PROIETTIVITA’
Le ombre generate dal sole sono trasformazioni affini (conservano il parallelismo). Quelle generate da una sorgente di luce sono proiettive (conservano l’allineamento).

16 le trasformazioni omotetia
L’omotetia è una particolare affinità che conserva la forma delle figure e, in particolare, la congruenza fra gli angoli; inoltre fra i segmenti esiste un rapporto costante, detto rapporto di similitudine. Detto k il rapporto di similitudine: • se k > 0 l'omotetia si dice diretta. • se k < 0 l'omotetia si dice inversa. • se k =1 si ha l'identità; • se k = −1 si ha la simmetria rispetto all'origine. B’ Il triangolo rosso è stato trasformato con l’omotetia in quello blu, un triangolo simile. Si può applicare lo stesso procedimento anche a figure più complesse. B C C’ A A’

17 Una trasformazione che consiste in un ingrandimento o riduzione ha come invariante globale la FORMA delle figure. Sono suoi invarianti : L’ampiezza degli angoli Il parallelismo Il rapporto tra segmenti

18 le trasformazioni isometria
Le isometrie sono trasformazioni che conservano le distanze tra i punti, perciò le figure trasformate risultano congruenti a quelle di partenza. Sono isometrie le traslazioni, le rotazioni e le simmetrie.

19 un' identità tutti i punti sono uniti.
le trasformazioni identità L' identità è la trasformazione di ogni punto del piano associato a se stesso. In un' identità tutti i punti sono uniti.

20 Trasformazioni geometriche: LE ISOMETRIE
Sono trasformazioni geometriche nelle quali la figura trasformata rimane congruente alla figura iniziale, conservandone sia la forma e sia la dimensione. Le trasformazioni isometriche si ottengono mediante movimenti rigidi delle figure, che cambiano unicamente la loro posizione nel piano.

21 ISOMETRIE Una trasformazione geometrica si chiama isometria o congruenza quando, comunque si scelgano due punti A e B del piano, se A’ e B’ sono i loro corrispondenti , il segmento A’B’ risulta congruente al segmento AB

22 Una particolare famiglia di trasformazioni del piano
CONGRUENZA Una particolare famiglia di trasformazioni del piano Le congruenze sono le trasformazioni del piano che conservano le distanze tra i punti

23 LE ISOMETRIE In matematica, e in particolare in geometria, si definisce isometria (o trasformazione rigida) una trasformazione che non modifica le distanze tra i punti (e, di conseguenza, le ampiezze degli angoli). A B C A' B' C' F F‘

24 Le isometrie Le principali isometrie sono: Traslazioni Rotazioni
Simmetria assiale Simmetria centrale

25 Proprietà delle isometrie
In una isometria: a una retta corrisponde una retta a rette incidenti corrispondono rette incidenti a retta parallele corrispondono rette parallele a ogni triangolo corrisponde un triangolo ad esso congruente ad ogni angolo corrisponde un angolo ad esso congruente

26 Identita’ L’identità è una trasformazione geometrica che fa corrispondere a ogni punto il punto stesso e quindi a ogni figura la figura stessa Poiché a un segmento corrisponde lo stesso segmento, l’identità è una ISOMETRIA. Inoltre un’ identità è una trasformazione involutoria in cui tutti gli elementi sono uniti

27 La traslazione La figura F con un lato appoggiato sulla retta r è stata spostata con un movimento rigido ottenendo F’. F’ r F Destro  destro Il movimento che ha portato F in F’ è una traslazione: ogni punto di F si è spostato della stessa lunghezza (6 cm), nella stessa direzione (parallelo ad r) e nello stesso verso ( a destra) dando origine ad F’.

28 Gli elementi che caratterizzano la traslazione sono quindi tre:
La sua lunghezza (6 cm) La sua direzione (parallela ad r) Il suo verso (da sinistra a destra) Queste tre caratteristiche definiscono un segmento orientato, chiamato vettore, indicato con v o con AB

29 TRASLAZIONE Fissato nel piano un vettore v, se a un punto P del piano si fa corrispondere un punto P’ tale che PP’ = v si ha una corrispondenza biunivoca tra i punti del piano , che si chiama Traslazione di vettore v. v P’ P

30 Teorema: la traslazione è un’isometria
Per individuare un vettore occorre indicare: La sua direzione, cioè la retta a cui appartiene Il suo verso, che indica il senso di percorrenza La sua intensità o modulo, che rappresenta la lunghezza del segmento AB Teorema: la traslazione è un’isometria Con questo teorema affermiamo che due figure che si corrispondono in una traslazione sono congruenti.

31 Inoltre la traslazione ha come caratteristiche invarianti:
L’allineamento dei punti La lunghezza dei segmenti L’ampiezza degli angoli Il parallelismo Le direzioni Il rapporto tra segmenti L’orientamento dei punti del piano

32 La rotazione Un punto, detto centro di rotazione
Un’altra trasformazione che mantiene invariate tutte le misure lineari e angolari è la rotazione attorno ad un punto. Per definire una rotazione è necessario che siano dati: Un punto, detto centro di rotazione L’ampiezza dell’angolo di rotazione Il verso di rotazione (orario o antiorario)

33 ROTAZIONE Siano dati in un piano un punto O e un angolo α di dato verso; per ogni punto del piano, si consideri la trasformazione che associa a un punto P il punto P’ tale che sia OP congruente a O’P’ e l’angolo POP’ congruente ad α Si ottiene una corrispondenza biunivoca che si dice Rotazione di ampiezza α intorno al centro O . P’ . α . P O

34 Teorema: la rotazione è un’isometria
La rotazione quindi ha le proprietà delle isometrie ed in particolare trasforma una figura in un’altra ad essa congruente. Valgono le seguenti proprietà: Il solo punto unito è il centro di rotazione Non esistono rette unite se non quelle che si corrispondono in una rotazione pari ad un angolo piatto La rotazione di ampiezza pari ad un angolo giro coincide con la trasformazione identità

35 La rotazione ha come caratteristiche invarianti:
L’allineamento dei punti La lunghezza dei segmenti Il parallelismo L’ampiezza degli angoli Il rapporto tra segmenti L’orientamento dei punti del piano

36 Una Rotazione Particolare: La Simmetria Centrale
Una rotazione di 180° attorno ad un punto C è una simmetria centrale. Il centro di simmetria è il centro della rotazione Teorema: la simmetria centrale è un’isometria Questo teorema garantisce che due figure simmetriche rispetto ad un punto sono congruenti Destro va in destro

37 SIMMETRIA CENTRALE Si dice simmetria centrale la trasformazione che fa corrispondere a un punto del piano il suo simmetrico rispetto a un dato punto 0, detto centro della simmetria P’ . P

38 Simmetria centrale Fissato il punto O come centro di simmetria, il punto A’ è simmetrico di A rispetto al centro O se O è punto medio del segmento AA’ A’ O A

39 Ogni retta passante per il centro è una retta unita, ma non fissa perché cambia l’ordinamento dei suoi punti Come in ogni rotazione l’unico punto fisso è il centro Due segmenti, o rette che si corrispondono in una simmetria centrale sono paralleli La simmetria centrale è involutoria

40 Il Ribaltamento: La Simmetria Assiale
Esistono situazioni in cui le figure mantengono le loro misure, ma si ‘ribaltano’ generando figure simmetriche rispetto ad un asse. Definizione: si dice simmetria assiale la trasformazione che, data una retta r, associa ad un punto P il suo simmetrico P’ rispetto ad r. La retta r prende il nome di asse di simmetria.

41 Simmetria assiale Fissata una retta r come asse di simmetria, il punto A’ è simmetrico di A rispetto alla retta r se r è l’asse del segmento AA’ A r A’

42 Teorema: la simmetria assiale è un’isometria
Sinistro  destro Segmenti corrispondenti sono uguali Si conservano gli angoli Triangoli corrispondenti sono congruenti Teorema: la simmetria assiale è un’isometria Questo teorema ci permette di dire che due figure che si corrispondono in una simmetria assiale sono congruenti.

43 Una retta a perpendicolare all’asse di simmetria ha per trasformata se stessa ed è quindi una retta unita; Attenzione però: non è una retta di punti uniti perché ciascun punto della retta non ha come trasformato se stesso. Una retta a // all’asse di simmetria ha per trasformata una retta a’ ancora // all’asse e quindi a a stessa. Ogni punto dell’asse di simmetria è unito perché gli corrisponde se stesso

44 Se A’ è il trasformato di A nella simmetria di asse r, il trasformato di A’ è ancora A e quindi la trasformazione è involutoria; Se i vertici del triangolo ABC si susseguono in senso orario, i loro corrispondenti A’B’C’ si susseguono in senso antiorario e quindi l’ordinamento dei punti non è un’invariante (è un’isometria invertente)

45 Gli invarianti della simmetria assiale sono: L’allineamento dei punti
Un angolo ha come asse di simmetria la sua bisettrice Un triangolo ha un asse di simmetria solo se è isoscele Il rombo ha due assi di simmetria (diagonali) Il cerchio infiniti assi di simmetria Gli invarianti della simmetria assiale sono: L’allineamento dei punti La lunghezza dei segmenti Il parallelismo Il rapporto tra segmenti L’orientamento dei punti del piano

46 ISOMETRIE IN NATURA E NELL’ARTE
In natura si possono individuare forme geometriche interpretabili assumendo come modello le trasformazioni isometriche. Le più frequenti sono la simmetria centrale e la simmetria assiale, presenti in natura sia nelle forme più elementari quali le diatomee, i protozoi e i cristalli di neve, sia in fiori, piante, pesci, uccelli, mammiferi. Nell’arte sin dall’antichità le trasformazioni isometriche del piano sono state usate per creare fregi ornamentali e pavimentazioni, per decorare soffitti e pareti di palazzi, per disegnare tessuti, per costruire rosoni ed edifici monumentali, realizzare statue.

47 La simmetria centrale e la simmetria assiale sono involutorie
La rotazione, in generale, non è involutoria a meno che l’angolo di rotazione non sia un angolo piatto o nullo. Se è piatto la rotazione è una simmetria centrale, se è nullo la rotazione coincide con l’identità La traslazione non è involutoria

48 fiocchi di neve medusa

49 rosoni

50 porta dei leoni (XV sec a.C.) Micene

51 fregio disegno di tessuto


Scaricare ppt "Le trasformazioni del piano"

Presentazioni simili


Annunci Google