Scaricare la presentazione
La presentazione è in caricamento. Aspetta per favore
1
Corso di Sistemi Complessi Adattativi
UNIVERSITA’ DEGLI STUDI DI CATANIA FACOLTA’ DI INGEGNERIA Corso di Laurea Specialistica in Ingegneria delle Telecomunicazioni Corso di Sistemi Complessi Adattativi SISTEMI CASUALI E SISTEMI CAOTICI Alessio Gemito
2
CONTENUTO DEL LAVORO SVOLTO
1) Introduzione e Definizioni generali 2) Sistemi Caotici Mappa Logistica Sistema di Lorenz Descrizione del modello Simulazioni Numeriche Esponenti di Lyapunov Strumento utile per verificare la caoticità di un Sistema Calcolo degli esponenti nel Sistema di Lorenz 3) Sistemi Casuali Il Moto Browniano 4) Conclusioni
3
I Sistemi Casuali sono cioè sistemi disordinati
INTRODUZIONE Nel linguaggio comune, i termini CASO e CAOS sono interpretati come sinonimi. In particolare con Sistemi Casuali e Sistemi Caotici si denominano tutti quei sistemi che sembrano non obbedire ad alcuna legge deterministica. NON E’ CORRETTO !!! OBIETTIVO: “Evidenziare” le differenze sostanziali che esistono tra tali sistemi ed “Elaborare” delle strategie che consentano la loro distinzione I Sistemi Casuali sono il risultato dell’interazione di molti fattori, ognuno dei quali non è preponderante sugli altri. Questi fattori non possono essere completamente individuati, fissati o comunque tenuti sotto controllo: I Sistemi Casuali sono cioè sistemi disordinati I Sistemi Caotici sono sistemi deterministici, non lineari e aperiodici; dipendono sensibilmente dalle condizioni iniziali e dagli errori sulle condizioni iniziali. Il loro comportamento è impredicibile sebbene si conoscano le equazioni del sistema (il modello matematico).
4
INTRODUZIONE La distinzione tra un segnale generato da un sistema casuale e quello generato da un sistema caotico, spesso, non è semplice! L’ analisi statistica classica non riesce a fornirci informazioni utili! Infatti gli spettri di segnali di questo tipo sono molto simili I due segnali sembrano entrambi casuali e non dotati di alcuna frequenza caratteristica (Spettro pressoché Piatto) Ma rappresentando s(n+1) in funzione di s(n) Emerge una Differenza Significativa!
5
(*) In Natura, nel lungo periodo, non esistono
PERTANTO : SISTEMA ORDINATO SISTEMA CAOTICO SISTEMA CASUALE Vento Solare, Rumore Termico, Moto Browniano Orologio atomico, Dinamica dei Pianeti (*) Meteorologia, Sistema di Lorenz ESEMPIO Finita e a breve termine;imprevedibilità a lungo termine (*) In Natura, nel lungo periodo, non esistono sistemi che presentano queste caratteristiche PREVEDIBILITA’ Altissima e Precisa Non è prevedibile EFFETTO DI PICCOLI ERRORI ALLE C.I. Piccolo e comunque controllabile e misurabile Nessun effetto, il sistema resta casuale ma si generano errori Effetto Farfalla DIMENSIONE (Numero di variabili indipendenti) Finita Finita Infinita Piatto e largo, simile a quello del rumore bianco SPETTRO Pulito e Limitato Largo e rumoroso Semplice CONTROLLO Complicato Impossibile Attrattore strano di periodo infinito con struttura Frattale Un sistema casuale non presenta bacini di attrazione Punto fisso, Ciclo limite, Toro limite ATTRATTORE
6
SISTEMI CAOTICI: La Mappa Logistica
Semplice modello (unidimensionale) di evoluzione discreta di una popolazione K ciclo di crescita della popolazione 0 ≤ x(K) ≤ 1 variabile di stato proporzionale al numero di individui 0 ≤ λ ≤ 4 tasso di crescita (in questo modo i valori di f(x) sono compresi tra 0 e 1) Evoluzione del Sistema al variare del parametro di controllo Per λ ≤ 1 il modello conduce sempre all’estinzione della popolazione Per λ ≤ 1 il modello conduce sempre all’estinzione della popolazione Per 1 ≤ λ ≤ 3 il sistema raggiunge un livello stabile, che non dipende da x(0) Per 1 ≤ λ ≤ 3 il sistema raggiunge un livello stabile, che non dipende da x(0) Per 3<λ≤3,56994 il sistema OSCILLA tra alcuni valori fissi; non c’è dipendenza da x(0) Per 3<λ≤3,56994 il sistema OSCILLA tra alcuni valori fissi; non c’è dipendenza da x(0) Per λ > 3, IL CAOS FA LA SUA APPARIZIONE
7
SISTEMI CAOTICI: La Mappa Logistica
Diagramma di Biforcazione (Feigenbaum): Evoluzione della mappa al variare del parametro di controllo λ . In pratica rappresenta l’attrattore della mappa al variare del parametro di controllo La transizione dall’ordine al caos segue delle leggi universali ben precise; infatti è caratterizzata da due costanti scoperte da Feigenbaum Queste costanti valgono per tutti i sistemi caotici e possono essere usate per predire quando il caos sopraggiungerà in un sistema; pertanto questo fenomeno di biforcazione è presente in tutti i sistemi che hanno un comportamento caotico
8
SISTEMI CAOTICI: Il Modello di Lorenz
Descrive il comportamento dinamico di uno strato di fluido che presenta moti convettivi a causa di una differenza di temperatura fra la superficie inferiore e quella superiore di un contenitore. Il modello è costituito da un sistema di tre equazioni differenziali del primo ordine in forma normale nelle variabili x, y e z: x: legata al campo di velocità del fluido y: proporzionale alla differenza di temperatura tra le correnti ascendenti e quelle discendenti z: proporzionale alla distorsione dalla linearità del profilo verticale di temperatura σ, b ed r: parametri idrodinamici che possono assumere solo valori positivi. I punti fissi sono quelli che annullano i secondi membri del sistema cioè:
9
Entrambe le traiettorie rimangono limitate;
Esponenti di Lyapunov: Strumento per l’individuazione di un sistema caotico Sono degli indicatori quantitativi delle dinamiche caotiche; in particolare, misurano la velocità media di allontanamento delle orbite. Il loro numero è uguale al numero di variabili di stato che descrivono il sistema in esame. Considerando due traiettorie di un sistema, generate a partire da due condizioni iniziali diverse Se per accade che: Entrambe le traiettorie rimangono limitate; Andamento Δ(t): : Allora si dice che il sistema presenta dipendenza sensibile dalle condizioni iniziali! Dipendenza sensibile dalle condizioni iniziali Le traiettorie sull’attrattore presentano almeno una direzione di DIVERGENZA ESPONENZIALE. PERTANTO: “Qualsiasi sistema dinamico che presenti almeno un esponente di Lyapunov positivo è definito caotico” .
10
Il Modello di Lorenz: SIMULAZIONI NUMERICHE
Tempo di osservazione [0, 40]
11
Il Modello di Lorenz: SIMULAZIONI NUMERICHE
Tempo di osservazione [0, 40]
12
Il Modello di Lorenz: SIMULAZIONI NUMERICHE
Tempo di osservazione [0, 40]
13
Il Modello di Lorenz: SIMULAZIONI NUMERICHE
Riepilogando X = - 8, Y = 8, Z = 27 X = 0, Y = 1, Z = 0 Anche gli esponenti di Lyapunov presentano una dipendenza dalle condizioni iniziali X = 0, Y = -8, Z = 0 Differenziazione delle traiettorie a causa di un piccolo errore sulle condizioni iniziali
14
Il Modello di Lorenz: SIMULAZIONI NUMERICHE
Al variare del parametro di Controllo r si possono avere anche comportamenti non caotici r = 22 r = 0.5 In entrambi i casi non si ha dipendenza dall’errore sulle Condizioni Iniziali e il massimo esponente di Lyapunov è negativo Sistema Non Caotico
15
I SISTEMI CASUALI Alla base della simulazione di un sistema casuale stanno i generatori di numeri casuali. Come generare una sequenza Casuale? 1 - Utilizzando un sistema caotico 2 - Ricorrendo al calcolatore che genera numeri pseudo-random 3 - Utilizzando un processo che sia intrinsecamente casuale, come il decadimento radioattivo di un nucleo, il rumore termico, il tempo di arrivo dei raggi cosmici sulla terra. “ Proprio questa è la singolare attività di una società britannica (Yuzoz) che ha creato un sistema capace di generare numeri casuali basandosi su tutto quello che va dall'analisi del vento solare alle nuvole di Venere, dalle emissioni di Giove ad altri eventi cosmici casuali; tale sistema genera oltre 200 numeri casuali al secondo. L'idea è di vendere questo modo di generare numeri random alle società del gaming online o a quelle che vendono trasmissioni televisive codificate. La speranza dell’azienda è che associare la produzione dei numeri ad eventi cosmici sia sufficiente a far emergere Yuzoz tra i molti sistemi già utilizzati per garantire questo genere di risultati assolutamente casuali e non pseudo-casuali”.
16
SISTEMI CASUALI: Il Moto Browniano
Se si osserva il moto di fluido in equilibrio termodinamico, disperdendovi delle particelle colorate molto leggere ed osservandone il movimento, si nota che queste non sono a riposo come ci si aspetterebbe; in particolare, ciascuna particella segue un moto assolutamente disordinato, appunto casuale, la cui natura appare essere indipendente dalla natura della particella stessa. Questo è dovuto al fatto che la particella in questione subisce un grande numero di urti con le altre particelle e con le molecole dello stesso fluido in cui è immersa. Quanto più piccole sono le particelle tanto più rapido è il moto browniano Script Matlab che simula l’aggregazione elettrochimica utilizzando appunto il moto browniano. L’ osservazione dei grafici ottenuti può condurci a conclusioni importanti; si osservano infatti dei Random Fractals
17
Il Moto Browniano: SIMULAZIONI NUMERICHE
La caratteristica fondamentale del moto è quella di permettere l'esplorazione di tutti i punti dello spazio in cui avviene il movimento (Descrive questa caratteristica Ekeland) Dimensione del piano = 3; Numero di collisioni della particella = 12 Questa simulazione evidenzia due proprietà dell’aggregazione e quindi del moto stesso: 1 – Casualità e indipendenza dalle condizioni iniziali: non si ha una ripetizione della stessa figura neanche nel lungo periodo. 2 – La caratteristica fondamentale descritta in precedenza viene osservata e verificata
18
Il Moto Browniano: SIMULAZIONI NUMERICHE
Dimensione del piano = 100; Numero di collisioni = 2000 1 – Natura casuale delle aggregazioni e quindi anche del moto delle particelle 2 – Ripetendo la simulazione n volte con gli stessi parametri, si hanno risultati sempre diversi Indipendenza dalle Condizioni Iniziali Assenza di bacini di attrazione Imprevedibilità a breve e lungo termine Random Fractals
19
Il Moto Browniano: SIMULAZIONI NUMERICHE
Dimensione del piano = 200; Numero di collisioni = 8000
20
CONCLUSIONI Abbiamo ribadito la differenza sostanziale che esiste tra Sistemi Casuali e Caotici Strumenti utili alla distinzione: (1) La presenza di una legge assicura che il sistema non è casuale (2) Autocorrelazione dei segnali in uscita dal Sistema (3) Calcolo degli Esponenti di Lyapunov per verificare l’eventuale caoticità (4) Eventuale esistenza dell’ Attrattore di periodo infinito Tale problema, comunque, è ancora oggi aperto! Ad esempio, potrebbe capitare che un sistema caotico, apparentemente, non presenti attrattori né esponenti di Lyapunov positivi; questa, però, non è una dimostrazione che non li abbia poiché, allo stato attuale, non è possibile dimostrare che questi fenomeni non si verifichino in un tempo maggiore di quello di osservazione e la cui durata non è per noi accessibile.
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.