La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Prodotti notevoli.

Presentazioni simili


Presentazione sul tema: "Prodotti notevoli."— Transcript della presentazione:

1 Prodotti notevoli

2 I Prodotti Notevoli Quadrato di binomio Cubo di binomio
Somma per differenza

3 Quadrato di un Binomio Cerchiamo la regola La regola
Il significato geometrico Esempi Esercizi proposti

4 Quadrato di binomio: significato algebrico
(a+b)2 = (a+b) (a+b) = = a2+ab+ab+b2 = = a2+2ab+b2

5 Quadrato di binomio: la regola
( a + b ) 2 = a 2 + 2ab + b 2 Il quadrato di un binomio è un trinomio avente per termini: il quadrato del 1° monomio il doppio prodotto del 1° monomio per il 2° il quadrato del 2° monomio

6 Quadrato di binomio: significato geometrico
(a + b) (a + b)2 a2 b2 ab (a + b)2 = a2 + 2 ab + b2

7 Quadrato di binomio: esempi
(2a+b)2 = (2a)2+2(2a)(+b)+(+b)2 = 4a2 + 4ab + b2 (2a - b)2 = (2a)2+2(2a)(-b)+(-b)2 = 4a2 - 4ab + b2 (3a+2b)2 = (3a)2 +2(3a)(+2b) +(+2b)2 = 9a2 +12ab +4b2 (3a -2b)2 = (3a)2 +2(3a)(-2b) +(-2b)2 = 9a ab +4b2 (-3a -2b)2 = (-3a)2 +2(-3a)(-2b)+(-2b)2 = 9a2 +12ab +4b2 (-3a+2b)2 = (-3a)2 +2(-3a)(+2b)+(+2b)2 = 9a2 -12ab+4b2

8 Quadrato di binomio: esercizi
(2a - 3b)2 = (-2a – 3b)2 = (x2 + 3y)2 = (5x – 3y)2 = (5a2 + 2b2)2 = (-3x3 – 2y2)2 = (2xy – 3y)2 = (7ab – 2a)2 = 9a a + 25 4a ab + 9b2 4a ab + 9b2 x4 + 6 x2y + 9y2 25x2 – 30xy + 9y2 25a a2b2 + 4b4 9x x3y2 + 4y4 4x2y xy2 + 9y2 49a2b a2b + 4a2

9 Quadrato di binomio: esercizi

10 Cubo di un Binomio Cerchiamo la regola La regola
Il significato geometrico Esempi Esercizi proposti

11 Cubo di binomio: significato algebrico
(a+b)3 = (a+b)2 (a+b) = = (a2+2ab+b2) (a+b) = = a3+a2b+2 a2b+2ab2+ab2+b3= = a3 + 3a2b + 3ab2 + b3

12 Cubo di binomio: la regola
( a + b ) 3 = a 3 + 3a2b + 3ab2 + b 3 Il cubo di un binomio è un quadrinomio avente per termini: il cubo del 1° monomio il triplo prodotto del quadrato del 1° per il 2° il triplo prodotto del 1° per il quadrato del 2° il cubo del 2° monomio

13 Cubo di binomio: significato geometrico
(a + b)3 = a3 + 3a2b + 3ab2 + b3

14 Cubo di binomio: esempi
(2a+b)3 = (2a)3 +3(2a)2(+b) +3(2a)(+b)2 +(+b)3 = = 8a3 + 12a2b + 6ab2 + b3 (2a - b)3 = (2a)3+3(2a)2(-b)+3(2a)(-b)2 +(-b)3 = = 8a3 - 12a2b + 6ab2 - b3 (-3a -2b)3 = (-3a)3 +3(-3a)2 (-2b)+3(-3a)(-2b)2 +(-2b)3 = = -27a a2 b - 36ab2 - b3 (-3a +2b)3 = (-3a)3 +3(-3a)2 (+2b)+3(-3a)(+2b)2 +(+2b)3 = -27a a2 b - 36ab2 + b3

15 Cubo di binomio: esercizi
(2a + 1)3 = (3a - b)3 = (-2x - 3y)3 = (a2 + 3b)3 = (a - 3b)3 = (a2 + 2b2)3 = (3a3 - 2b2)3 = (2ab - 3b)3 = 8a3+12a2+6a+1 27a3-27a2b+6ab2-b3 -8x3-36x2y-54xy2-27y3 a6+9a4 b+27a2b2+27b3 8a3-36a2 b+54ab2 -27b3 a6+6a4 b2+12a2b4+8b6 27a9-54a6b2+36a3b4-8b6 8a2b2-36a2 b3+54ab3-27b3

16 Cubo di binomio: esercizi

17 Potenza n-esima di binomio: Triangolo di Tartaglia
(a+b)0 = 1 (a+b)1 = (a+b)2 = (a+b)3 = (a+b)4 = (a+b)5 = (a+b)6 = In questo prospetto: ogni riga inizia e termina con 1 ogni altro numero si ottiene sommando quelli sovrastanti della riga precedente

18 Potenza n-esima di binomio: la regola
(a+b)n = an+nan-1b + ……. + nabn-1+bn La potenza n-esima di un binomio è un polinomio omogeneo di grado n, ordinato e completo secondo le potenze decrescenti di a e crescenti di b, i cui coefficienti si ottengono dal Triangolo di Tartaglia. In pratica, si procede nel seguente modo: si scrive la parte letterale di ogni monomio tenendo conto che è di grado n e le potenze di a decrescono (da n fino a 0) e di b crescono(da 0 ad n) si calcolano i coefficienti di ogni monomio con il Triangolo di Tartaglia

19 Potenza n-esima di binomio: esempi
(a + b)4 = (a)4+4(a)3(+b)+6(a)2(+b)2+4(a)(+b)3+(+b)4 = = a4 + 4a3b + 6a2b2 + 4ab3 + b4 (a - b)4 = (a)4+4(a)3(-b)+6(a)2(-b)2+4(a)(-b)3+(-b)4 = = a4 - 4a3b + 6a2b2 - 4ab3 + b4 (2a+b)5 = =(2a)5+5(2a)4(b)+10(2a)3(b)2+10(2a)2(b)3 +5(2a)(b)4+(b)5 =32a5+5(16a4)(b)+10(8a3)(b2) +10(4a2)(b3) +5(2a)(b4)+b5 =32a5 + 80a4b + 80a3b2 + 40a2b3 + 10ab4 + b5 (3a-2b)4 = =(3a)4 +4(3a)3(-2b)+6(3a)2(-2b)2+4(3a)(-2b)3+(-2b)4 = =81a4 +4(27a3)(-2b)+6(9a2 )(+4b2)+4(3a)(-8b3)+16b4= = 81a a3b + 216a2b ab3 + 16b4

20 Somma per differenza Cerchiamo la regola La regola Esempi
Esercizi proposti

21 Somma per differenza: significato algebrico
(a+b) (a-b) = = a2 - ab + ab - b2 = = a2 - b2

22 Somma per differenza: la regola
( a + b ) ( a - b ) = a 2 - b 2 Il prodotto della somma di due termini per la loro differenza è uguale al quadrato del primo termine meno il quadrato del secondo termine

23 Somma per differenza: esempi
(2a+b) (2a+b) = (2a)2 - (b)2 = 4a2 - b2 (2a - 5b) (2a + 5b) = (2a)2 - (5b)2 = 4a2 - 25b2 (3a+2b) (3a-2b) = (3a)2 - (2b)2 = 9a2 - 4b2 (-a +2b) (-a - 2b) = (-3a)2 - (2b)2 = 9a b2 (4a + b) (- 4a + b) = (b)2 - (4a)2 = b a2 (-3b+2a) (+3b+2a) = (2a)2 - (3b)2 = 4a2 - 9b2


Scaricare ppt "Prodotti notevoli."

Presentazioni simili


Annunci Google