Scaricare la presentazione
1
The TOP-IMPLART project
Luigi PICARDI ENEA FSN-TECFIS-APAM Particle Accelerators and Medical Applications Laboratory collaborazione Progetto TOP-IMPLART: Workshop RAIN’15 Frascati, 12 Ottobre 2015
2
Protontherapy Using the most advanced techniques
Advantages of protontherapy vs photon therapy: Spatial selectivity (protons stop and do not emit further radiation) Lower dose to healthy tissues 7 campi con IMRT 2 campi con IMPT Using the most advanced techniques used with photon beams (IMRT), and Transferring them to protons We can have superior dose Concentration and a still more Conformal treatment (IMPT). IMRT-IMPT
3
PTCOG STATISTIC (www.ptcog.ch):
Protontherapy Accelerators PTCOG STATISTIC ( Total facilities in operation 48 Patient statistic (end 2013): Total for all facilities (in and out operation): (only protons) Ciclotroni 28 Proton Centers 40 Sincrotroni 11 Ion Centers 8 Sincrociclotroni 1
4
Protontherapy Accelerators
5
COST PER Treatment Session
Protontherapy Accelerators - It is mandatory to reduce treatment and facility costs - Less expensive accelerators, more efficient, more compact - Treatments with less number of fractions and duration (hypo-fractionated treatments) PHOTONS PROTONS PRICE 2-3.5 MUSD 20-35 MUSD FOOTPRINT 100 m2 m2 COST PER Treatment Session 400 Euro 1000 Euro PATIENTS PER YEAR 12.000 M. Schillo (Varian) Conf. IPAC14
6
Protontherapy Accelerators
Alternatives to cyclotrons and syncrotrons: Compact Sincro-cyclotrons MEVION S250 FFAG FULL LINAC (Progetto TOP-IMPLART) CYCLINAC Dielectric wall accelerators Sorgenti laser
7
The TOP-IMPLART Project
Objective : Realization of a protontherapy facility based on a fully linear proton accelerator with maximum energy of 230 MeV to be installed at IFO, Roma. Pursued jointly by : ENEA (accelerator, cellular and animal radiobiology) ISS (National Institute of Health) (dosimetry, beam monitoring, radiobiology) IFO (Oncological Hospital) (final user, clinical requirements, treatment planning, shielding)
8
The TOP-IMPLART Project
IFO-Roma
9
The TOP-IMPLART Project
The prototype up to 150 MeV has been funded by Regione Lazio with 11 M€ to be installed at IFO after being tested at ENEA- Frascati: 2010: agreement ENEA, ISS, IFO e Regione Lazio Jan 2013: Project start with a 2.5M€ first tranche June 2014: Second tranche 2M€ Involvment of italian companies (mainly in Lazio): CECOM, NRT R&D, SIT, TSC
10
The TOP-IMPLART Project
Prototype funded by Regione Lazio Development and Test site : CRE ENEA-Frascati Ed. ex SINCRO
11
Origins of the TOP-IMPLART Project
TOP (Terapia Oncologica con Protoni)-IMPLART (Intensity Modulated Proton Linear Accelerator) 1993: ENEA Accelerator Laboratory joins the Hadrontherapy Collaboration (prof. Ugo Amaldi) : Invention of the SCDTL structure at 3 GHz for low energy protons (ENEA patent) 1996: Proposal of a 200 MeV linear accelerator in collaboration with TERA and CERN RF input Coupling Cavity Accelerating Tank PMQ SCDTL
12
Origins of the TOP-IMPLART Project
Design approved by the TOP Project (Terapia Oncologica con Protoni) carried on by ISS. Start of the collaboration of ENEA,ISS,IFO 2 Contracts ENEA-ISS (2.6 M€) for acquiring the injector and development of prototypes of 3 GHz linac Revision of the Project, research for funds. The project name acquires the word IMPLART In parallel, ENEA activity in the field of IORT medical accelerators: know-how transfer to an italian company (Hitesys, then NRT e SORDINA now SIT) that has sold more than 80 machines worlwide. SCDTL
13
TOP-IMPLART LINAC: Low energy section
Commercial injetctor ACCSYS-HITACHI (operating frequency 425 MHz), model PL7: P-Source duoplasmatron (30 keV)+RFQ (3 MeV) +DTL (7 MeV). Modified for low current operation vertical LEBT (includes a 90 magnet) dedicated to radiobiology experiments Horizontal LEBT (4 electromagnetic quadrupoles)
14
Present Layout: Injector
A) Source B) RFQ C) DTL D) RF supply D A B C Diaphragm limiting the input current Imax=150 uA Variable beam intensity by an electrostatic lens before the diaphragm lens
15
Present Layout: vertical line
Clinical steel holder di acciaio (=13 mm) with cells layer (6µm ) on Mylar (60µm) with loro terreno di coltura Kapton window 50 µm Magnete a 90° 69 cm Gold sheet (2 µm) Aluminum collimator ( =2 mm) Line dedicated to “in vitro” radiobiology esperiments
16
Experimental activity:radiobiology
Irradiation of V79 cells vs dose (0.5-8 Gy) for different beam energies and dose rates. Dosimetry by gafchromic films: EBT3 Energia=5 MeV (LET=7.7 keV/µm) frip=6.25 Hz Dose rate=2 Gy/min
17
TOP-IMPLART LINAC: medium energy section (7-35 MeV)
4 SCDTL modules 3 GHz operation One 10 MW peak power klystron SCDTL structure (Side Coupled Drift tube Linac) invention was pushed by the need to compact DTL structures. Since protonterapy requires very low currents without space charge problems, this application allows using high operating RF frequency.
18
Present Layout:SCDTL-1/ -2 /-3
The first three structures shown in line – These will produce a 27 MeV beam, that has been set a s a first milestyone of the project
19
Present Layout:SCDTL-1
N. of accelerating tanks 9 Lenght 1.1 m Beam hole diameter 4 mm Power needed 1.3 MW Energy: input 7 MeV Energy: output 11.6 MeV SCDTL-1 realizzato da CECOM (Guidonia) PMQ tank PMQ smontabili interno tank
20
Beam tests: (SCDTL-1 module)
Proton beam Spot del fascio at SCDTL-1 exit Output beam current 10 mm
21
Beam tests: (SCDTL-1 module)
il 43% del fascio in uscita ha una energia superiore a 11 MeV.Il picco è attorno a MeVa 11.6 Misura di energia tramite misura range in Al (curva di trasmissione vs spessore crescente di Alluminio) Corrente accelerata=15 µA
22
Beam measurements between
SCDTL-1 and SCDTL-2) Faraday cup mobile Accelerated current by SCDTL-1 (actually up to 40 uA) read on a beam stop after 500 µm of Al (to cut low energy particles)
23
Beam tests: (SCDTL-2 module)
Optimal values of amplitude and phase have been set maximizing beam current transmission after an aluminum 1.5 mm thick sheet SCDTL2 cavity video SCDTL1 cavity video
24
Beam tests: (SCDTL-2 module, 18 MeV)
Da intensità integrata sulla immagine della spot in uscita da SCDTL-2 7 MeV 0.306 mm 11.63 MeV 0.781 mm 18 MeV 1.7 mm
25
Present Layout:SCDTL-3
Final cold tests on SCDTL-3 structure
26
SCHEMA FINALE DI DISTRIBUZIONE DI POTENZA E CONTROLLO DI FASE SU 4 STRUTTURE
Il sistema di distribuzione di RF è completo dei componenti principali per assicurare la potenza alle prime 4 strutture Attualmente si sta ancora usando un Klystron di potenza di proprietà ENEA, ma è stata espletata la gara per l’acquisto di un sistema moderno presso la Scandinova con Klystron Thales da 10 MW (già acquistato) Riblet2 Riblet 1 1 SCDTL MW SCDTL MW SCDTL MW SCDTL MW
27
1. Dinamica power-divider (MEGA ind.): -0.1 dB 30 dB
SETTING DI AMPIEZZA E FASE TRAMITE SISTEMA COMMERCIALE AD AMPIA DINAMICA 1. Dinamica power-divider (MEGA ind.): -0.1 dB 30 dB 2. Dinamica phase shifter (MEGA ind.): 0 – 360 gradi Pannello d controllo remotizzato Asse X:posizione del motore sul di movimentazione del phase shifter. In rosso fase misurata su SCDTL2 MISURA DI MODULO E FASE SU SCDTL-1 SCDTL-22
28
LINAC TOP-IMPLART:sezione alta energia (35-150 MeV)
4 moduli di tipo CCL (Coupled Cavity Linac) ciascuno alimentato da una singola unità RF (klystron da 10 MW) Per acceleratori di protoni modelli sono stati sviluppati da TERA e INFN-Napoli a 60 e 30 MeV. La società ADAM, spin-off del CERN ha costruito un modulo a 30 MeV Varie strutture CCL sono state costruite in ENEA e impiegate per linac a elettroni.
29
LINAC TOP-IMPLART:sezione alta energia (35-150 MeV)
4 moduli di tipo CCL (Coupled Cavity Linac) ciascuno alimentato da una singola unità RF (klystron da 10 MW) Energia variata in maniera attiva sopra gli 85 MeV spegnendo le s Singole unità RF e variando la potenza nell’ultimo modulo acceso
30
TOP-IMPLART: foreseen temporal scale
2015: 27 MeV 2016: 35 MeV. 2017: MeV (minimum energy of clinical interest - eye) 2018: 150 MeV (Head and neck and paediatric tumors)
31
Possible low cost "single room facility"
Le perdite di fascio confinate alla parte di bassa energia suggeriscono la possibilità di realizzare un acceleratore compatto localmente schermato,con una singola uscita
32
Sviluppi:altre iniziative derivate
Sono stati avviati 2 programmi di interesse industriale basati sullo schema dell’acceleratore TOP-IMPLART: LIGHT da società ADAM (Ginevra) spinoff del CERN recentemente acquistata da AVO Oncotherapy, (England) ERHA da ITEL (Ruvo di Puglia) che ha siglato recentemente un accordo di collaborazione con l’INFN Entrambe le società hanno stipulato dei contratti con ENEA per lo studio di fattibilità della prima parte del linac (SCDTL) e le simulazioni della dinamica del fascio
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.