Scaricare la presentazione
La presentazione è in caricamento. Aspetta per favore
1
Calcolo Parallelo e Distribuito
Parallel sparse Matrix-Vector and Matrix-Transpose-Vector multiplication using compressed sparse blocks A. Buluc, J. T. Fineman, M. Frigo, J. R. Gilbert, C. E. Leiserson Calcolo Parallelo e Distribuito Anno Accademico 2009/2010 Presentazione a cura di: Marco Cherubini, Andrea De Pirro, David Santucci, Andrea Tersigni, Luca Tracuzzi
2
Sommario Formati di memorizzazione convenzionali Il nuovo formato CSB
Moltiplicazione Matrice-Vettore con CSB Analisi della complessità Sperimentazione
3
Formati convenzionali: CSR
Analizziamo alcuni formati di memorizzazione convenzionali Consideriamo matrici sparse n×n con nnz elementi non nulli CSR - Compressed Sparse Rows Memorizzazione per righe Efficiente: memorizza n+nnz indici o puntatori per matrici sparse n×n con nnz elementi non nulli Adatto per y Ax Non adatto per y ATx
4
Formati convenzionali: CSR
5
Ax parallelo con CSR Nota: ATx con CSC è analogo CSR_SPMV (A, x, y)
1 nA.rows 2 for i0 to n−1 in parallel 3 do y[i]0 4 for kA.row_ptr[i] to A.row_ptr[i+1]−1 5 do y[i]y[i]+A.val[k]·x[A.col_ind[k]] val[nnz] : array dei valori non nulli della matrice (ordinati per righe) col_ind[nnz] : indici di colonna degli elementi nell'array val row_ptr[n] : puntatori al'inizio della riga n nell'array val Nota: ATx con CSC è analogo
6
Formati convenzionali: CSC
CSC - Compressed Sparse Columns Memorizzazione per colonne Efficiente: memorizza n + nnz indici o puntatori Adatto per y ATx risoluzione di problemi di programmazione lineare Non adatto per y Ax
7
Formati convenzionali: CSC
8
Il nuovo formato CSB β = block-size parameter
Consideriamo matrici sparse n×n con nnz elementi non nulli β = block-size parameter valore ideale = circa √n per semplicità si assume β potenza di 2 CSB - Compressed Sparse Blocks Partizionamento della matrice in blocchi quadrati di dimensione β × β Numero di blocchi n2 / β 2 Ordinamento Z-Morton interno ai blocchi Sostiene y Ax e y ATx
9
Il nuovo formato CSB
10
Il nuovo formato CSB
11
Il nuovo formato CSB
12
Il nuovo formato CSB
13
Il nuovo formato CSB
14
Prod. Matrice-Vettore con CSB
CSB_SPMV (A, x, y) 1 for i0 to n/β−1 in parallel // riga di blocco 2 do Initialize a dynamic array Ri 3 Ri[0]0 // Array di indici per // gli ultimi blocchi dei chunk 4 count0 // Contatore nnz in un chunk 5 for j0 to n/β−2 6 do countcount+nnz(Ai,j) 7 if count+nnz(Ai,j+1) > O(β) 8 then // Fine chunk 9 append j to Ri // Ultimo blocco del chunk 10 count0 11 append n/β−1 to Ri 12 CSB_BLOCKROWV (A, i, Ri, x, y[(i∙β),…,((i+1)∙β)−1])
15
Prod. Matrice-Vettore con CSB
Divisione in chunk -1
16
Prod. Matrice-Vettore con CSB
Divisione in chunk -1
17
Prod. Matrice-Vettore con CSB
Divisione in chunk -1
18
Prod. Matrice-Vettore con CSB
Divisione in chunk -1
19
CSB_BLOCKROWV (A, i, R, x, y) 11 if R.length = 2 // Singolo chunk
12 then ℓR[0]+1 // Blocco più a sinistra nel chunk 13 rR[1] // Blocco più a destra nel chunk 14 if ℓ = r 15 then // Il chunk contiene un singolo blocco denso 16 startA.blk_ptr[ f(i,ℓ)] 17 endA.blk_ptr[ f(i,ℓ)+1]−1 18 CSB_BLOCKV (A, start, end, β, x, y) 19 else // Il chunk è sparso 20 multiply y(Ai,ℓ Ai,ℓ+1 … Ai,r)x serially 21 return // Se la riga di blocchi contiene più chunk 22 mid⌈R.length/2⌉−1 // Divide i chunk in due sottoinsiemi // Calcola il punto di split per il vettore x 23 xmid β·(R[mid]−R[0]) 24 Alloca un vettore z di cardinalità β, inizializzati a 0 25 in parallel 26 do CSB_BLOCKROWV(A, i, R[0…mid], x[0…xmid−1], y) 27 do CSB_BLOCKROWV(A, i, R[mid…R.length−1], x[xmid…x.length−1], z) 28 for k0 to β−1 29 do y[k]y[k]+z[k]
20
// Se la riga di blocchi contiene più chunk
CSB_BLOCKROWV (A, i, R, x, y) 11 if R.length = 2 // Singolo chunk 12 then ℓR[0]+1 // Blocco più a sinistra nel chunk 13 rR[1] // Blocco più a destra nel chunk 14 if ℓ = r 15 then // Il chunk contiene un singolo blocco denso 16 startA.blk_ptr[ f(i,ℓ)] 17 endA.blk_ptr[ f(i,ℓ)+1]−1 18 CSB_BLOCKV (A, start, end, β, x, y) 19 else // Il chunk è sparso 20 multiply y(Ai,ℓAi,ℓ+1…Ai,r)x serially 21 return // Se la riga di blocchi contiene più chunk 22 mid⌈R.length/2⌉−1 // Divide i chunk in due sottoinsiemi // Calcola il punto di split per il vettore x 23 xmid β·(R[mid]−R[0]) 24 Alloca un vettore z di cardinalità β, inizializzati a 0 25 in parallel 26 do CSB_BLOCKROWV(A, i, R[0…mid], x[0…xmid−1], y) 27 do CSB_BLOCKROWV(A, i, R[mid…R.length−1], x[xmid…x.length−1], z) 28 for k0 to β−1 29 do y[k]y[k]+z[k]
21
Prod. Matrice-Vettore con CSB
y[β..2β-1] Split ricorsivo dei chunk
22
Prod. Matrice-Vettore con CSB
y[β..2β-1] Split ricorsivo dei chunk
23
CSB_BLOCKV (A, start, end, dim, x, y)
28 if end−start ≤ O(dim) 29 then // Calcola la computazione seriale y←y+Mx 30 for kstart to end // A.val[start…end] è un blocco dim×dim 31 do y[A.row_ind[k]] y[A.row_ind[k]] + A.val[k]·x[A.col_ind[k]] 32 return 33 // Ricorsione: divide il blocco M in 4 quadranti 34 binary search start, start+1,…,end per il più piccolo s2 tale che (A.row_ind[s2] & dim/2) ≠ 0 35 binary search start, start+1,…,s2−1 per il più piccolo s1 tale che (A.col_ind[s1] & dim/2) ≠ 0 36 binary search s2, s2+1,…,end per il più piccolo s3 tale che (A.col_ind[s3] & dim/2) ≠ 0 37 in parallel 38 do CSB_BLOCKV (A, start, s1−1, dim/2, x, y) // M00 39 do CSB_BLOCKV (A, s3, end, dim/2, x, y) // M11 40 in parallel 41 do CSB_BLOCKV (A, s1, s2−1, dim/2, x, y) // M01 42 do CSB_BLOCKV (A, s2, s3−1, dim/2, x, y) // M10
24
Prod. Matrice-Vettore con CSB
Decomposizione Z-Morton in 4 quadranti
25
Prod. Matrice-Vettore con CSB
Decomposizione Z-Morton in 4 quadranti
26
Prod. Matrice-Vettore con CSB
Decomposizione Z-Morton in 4 quadranti
27
Prod. Matrice-Vettore con CSB
Decomposizione Z-Morton in 4 quadranti
28
Analisi di complessità
Al fine di valutare la complessità dell'algoritmo definiamo: work: denotato con T1, rappresenta il tempo di esecuzione in una macchina monoprocessore monothread span: denotato con T∞, rappresenta il tempo di esecuzione con un infinito numero di processi o thread Viene definito grado di parallelismo il rapporto T1/T∞
29
Lemma 1 Lemma 1: il formato CSR usa n∙log(nnz) + nnz∙log(n) bit di indici di supporto per una matrice n×n con nnz elementi non nulli. Dimostrazione: per indicizzare x elementi sono necessari log(x) bit. Dal prodotto righe-colonne risultano n∙log(nnz) bit per il row_ptr e nnz∙log(n) bit per col_ind.
30
Lemma 1 (continua)
31
Lemma 2 Lemma 2: Il formato CSB usa (n2/β2)∙log(nnz)+2∙nnz∙log(β) bit di indici di supporto per una matrice n×n con nnz elementi non nulli. Dimostrazione: per ogni elemento in val, usiamo log(β) bit per rappresentare l'indice di riga e log(β) bit per rappresentare l'indice di colonna e richiede quindi nnz∙log(β) bit per ciascuno degli indici. Aggiungiamo lo spazio dato dall'array blk_ptr, ossia (n2/β2) ∙ log(nnz) bit.
32
Lemma 2 (continua)
33
Lemma 2 (continua)
34
Corollario 3 Corollario 3: il formato CSB usa (n)∙log(nnz)+nnz∙log(n) bit di indici di supporto per una matrice n×n con nnz elementi non nulli, con β=√n.
35
Lemma 4 Lemma 4: Su un blocco di dimensioni β×β, contenente r elementi non nulli, CSB_BlockV viene eseguito con work O(r) e span O(β). Dimostrazione (span): lo span relativo alla moltiplicazione di una matrice dim×dim può essere descritto da S(dim)=2∙S(dim/2)+O(log(dim))=O(dim). 2∙S(dim/2): viene invocata 2 volte in parallelo la ricorsione su un singolo blocco di dim/2 O(log(dim)): costo della ricerca binaria dei tre indici di split caso base = O(dim): il caso base è seriale su O(dim) elementi ed è dominante sui casi ricorsivi
36
Lemma 4 (continua) Dimostrazione (work):
Consideriamo l'albero di grado 4 generato dalle chiamate ricorsive della funzione CSB_BlockV; ogni nodo corrisponde alla computazione di un sottoblocco dim×dim, con dim=2h, e 0<h<log(β). Se un nodo è una foglia, allora verifica il caso base ed ha sicuramente al più O(2h)=O(dim) elementi non nulli. Ne deriva quindi che il costo di computazione del nodo è O(r). [..]
37
CSB_BLOCKV (A, start, end, dim, x, y)
28 if end−start ≤ O(dim) 29 then // Calcola la computazione seriale y←y+Mx 30 for kstart to end // A.val[start…end] è un blocco dim×dim 31 do y[A.row_ind[k]] y[A.row_ind[k]] + A.val[k]·x[A.col_ind[k]] 32 return 33 // Ricorsione: divide il blocco M in 4 quadranti 34 binary search start, start+1,…,end per il più piccolo s2 tale che (A.row_ind[s2] & dim/2) ≠ 0 35 binary search start, start+1,…,s2−1 per il più piccolo s1 tale che (A.col_ind[s1] & dim/2) ≠ 0 36 binary search s2, s2+1,…,end per il più piccolo s3 tale che (A.col_ind[s3] & dim/2) ≠ 0 37 in parallel 38 do CSB_BLOCKV (A, start, s1−1, dim/2, x, y) // M00 39 do CSB_BLOCKV (A, s3, end, dim/2, x, y) // M11 40 in parallel 41 do CSB_BLOCKV (A, s1, s2−1, dim/2, x, y) // M01 42 do CSB_BLOCKV (A, s2, s3−1, dim/2, x, y) // M10
38
Lemma 4 (continua)
39
Lemma 4 (continua)
40
Lemma 4 (continua)
41
Lemma 4 (continua) [...] Se un nodo è interno, allora ha almeno O(dim) elementi non nulli. Il costo computazionale del nodo, senza considerare nodi figli, è pari a O(log(dim))=O(log(2h))=O(h), dovuto alla ricerca binaria. I nodi generici di livello h sono al più O(r/dim), e quindi concorrono ad un lavoro complessivo per ogni livello pari a O(h∙r/dim). sommando, per ogni h, nodi interni su tali livelli e nodi foglia, otteniamo O(r):
42
Lemma 5 Questo lemma analizza la moltiplicazione fra una riga di blocchi e un vettore Lemma 5: Su una riga di blocchi contenente n/β blocchi e r elementi non nulli, CSB_BlockrowV viene eseguito con work O(r) e span O(β∙log(n/β)).
43
Lemma 5 (continua) Dimostrazione (work):
consideriamo la chiamata su una riga di blocco partizionata in C chunk e definiamo W(C) il lavoro (work) eseguito. La funzione inizializza un vettore z di O(β) elementi e richiama ricorsivamente se stessa due volte, sulla metà dell'input Il lavoro è descritto dalla disequazione W(C) ≤ 2∙W(⌈C/2⌉)+O(β) da cui deriva W(C)=O(C∙β+r), poiché si hanno C attivazioni di complessità O(β), più i casi base di complessità O(r), ossia la computazione seriale del prodotto. Il numero C di chunk è, al più, pari a O(r/β) nel caso in cui r=O(β)
44
Lemma 5 (continua) Dimostrazione (span):
Lo span può essere descritto da S(C)=S(⌈C/2⌉)+O(β)=O(β∙log(C))+S(1) Abbiamo che il caso base ha uno span pari O(β) sia nel caso della moltiplicazione seriale che in quella nella chiamata CSB_BlockV Il caso base viene eseguito log(C) volte, con C ≤ n/β Lo span complessivo è quindi O(β∙log(n/β))
45
Teorema 6 Teorema 6: In una matrice n×n contenente r elementi non nulli, CSB_SpMV viene eseguito con un work O(r+n2/β2) e uno span di O(β∙lg(n/β))+n/β). Dimostrazione: CSB_SpMV ricostruisce i chunk e avvia la funzione CSB_BlockrowV. Il costo computazionale, per work e span deriva dal lemma precedente con l'aggiunta del costo necessario alla costruzione dei chunk. [...]
46
Teorema 6 (continua) Dimostrazione: [...]
nel caso del work si aggiunge un costo pari a O(n2/β2) dovuto all'analisi di una singola riga di blocchi di costo O(n/β) per un costo totale di O(r+n2/β2) nel caso dello span si aggiunge un costo pari a O(n/β) dato che è possibile parallelizzare l'operazione per ogni singola riga di blocchi, ottenendo un costo totale di O(β∙lg(n/β))+n/β)
47
Corollario 7 e 8 Corollario 7: in una matrice n×n, contenente nnz ≥ n valori non nulli, scegliendo β=O(√n), CSB_SpMV lavora con un work di O(nnz) e uno span di O(√n)∙log(n)) raggiungendo un parallelismo di almeno O( nnz / (√n∙log(n)) ) Corollario 8: in una matrice n×n, contenente nnz ≥ n valori non nulli, scegliendo β=O(√n), CSB_SpMV_T lavora con un work di O(nnz) e uno span di O(√n∙log(n)) raggiungendo un parallelismo di almeno
48
Lemma 9 Lemma 9: In una matrice n×n, scegliendo β = O(√n), la serializzazione di CSB_SpMV richiede uno spazio di O(√n∙log(n)) non contando lo spazio occupato dalla matrice stessa Dimostrazione: lo spazio complessivo utilizzato è dato da due overhead il primo, R, è l'array dei chunk, che, per ogni riga, utilizza uno spazio O(n/β). Dato che β=√n, si ha che lo spazio complessivo utilizzato è O(√n). il secondo, z, è il vettore temporaneo di dimensione pari a β. A causa della profondità della ricorsione, lo spazio utilizzato è O(β∙log(n))=O(√n∙log(n)) la complessità finale è quindi O(√n∙log(n))+O(√n)=O(√n∙log(n))
49
Corollario 10 Corollario 10: supponiamo un'esecuzione di CSB_SpMV per una matrice n×n con la scelta β=√n in un work-stealing scheduler (preemptive round robin) con la proprietà busy-leaves. Allora l'esecuzione richiede uno spazio di O(P∙√n∙log(n)), con P pari al numero di processi utilizzati
50
Sperimentazione Scelta valore di β Performance media di Ax e ATx
Risultati reali sulla scalabilità degli algoritmi matrici di medie dimensioni matrici di grandi dimensioni
51
Scelta del valore di β Si dimostra sperimentalmente che il valore ottimale di β deve rispettare la disequazione ⌈log(√n)⌉ ≤ log(β) ≤ 3+⌈log(√n)⌉ L'utilizzo di β=√n per semplicità di calcolo rispetta tale vincolo
52
Performance media di Ax e ATx
Sia CSB_SpMV che CSB_SpMV_T offrono ottime prestazioni all'aumentare del numero di processori fino a 4 processori lo speedup cresce linearmente da 4 a 8 è meno che lineare, ma comunque crescente con più di 8, le prestazioni decadono a causa dei limiti della memoria di sistema
53
Risultati sperimentali (dim media)
I risultati sono stati condotti con matrici relative a problemi reali (e.g. elettroforesi DNA, meccanica strutturale,...)
54
Risultati sperimentali (dim grande)
Per matrici grandi CSB scala in modo ottimale
55
CSR vs CSB Analizziamo il rapporto tra le performance di CSR e CSB nel caso di esecuzione parallela Per il confronto è stato usato l’algoritmo Star-P che usa CSR
56
Grazie per l'attenzione
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.