Scaricare la presentazione
La presentazione è in caricamento. Aspetta per favore
1
Hashing
2
argomenti Hashing Funzioni hash per file Tabelle hash
Funzioni hash e metodi per generarle Inserimento e risoluzione delle collisioni Eliminazione Funzioni hash per file Hashing estendibile Hashing lineare Hashing
3
Richiamo sul concetto di dizionario
Insieme di coppie del tipo <elemento, chiave> Le chiavi appartengono a un insieme totalmente ordinato Operazioni: insert(el, key) delete(key) search(key) Hashing
4
Tabelle hash Adatte per realizzare dizionari
Generalizzazione del concetto di array Importanti nell’accesso a dati su memoria secondaria Gli accessi avvengono a memoria secondaria Costo degli accessi predominante Indirizzamento diretto: si associa ad ogni valore della chiave un indice di un array – ricerca in tempo O(1) Problemi? Hashing
5
Indirizzamento diretto
Ogni possibile chiave corrisponde a el. diverso dell’array Può portare a spreco di memoria Es.: studenti e matr.= No. decimale a 5 cifre 1 No. chiavi N-1 Hashing
6
Obiettivi N ~ No. Chiavi effettivamente usate Tempo di ricerca O(1)
N ~ No. Chiavi effettivamente usate Tempo di ricerca O(1) D.: possibile? Nota: No. Chiavi possibili può essere >> N 1 No. chiavi N-1 Hashing
7
Tabella hash Dato l’insieme base di un dizionario: <T, h>
T è una tabella con N celle h: K {0,...,N-1} K insieme delle possibili chiavi {0,...,N-1} insieme delle posizioni nella tabella, dette pseudochiavi Hashing
8
Funzioni hash perfette e collisioni
Funzione hash perfetta: k1!=k2 h(k1) != h(k2) Richiede N >= |K| Raramente ragionevole in pratica In generale N < |K| (spesso N << |K|) Conseguenza: k1!=k2 ma h(k1) == h(k2) è possibile Collisione Paradosso del Compleanno Es.: proporre una funzione hash perfetta nel caso in cui le chiavi siano stringhe di lunghezza 3 sull’alfabeto {a, b, c} Hashing
9
Requisiti di una funzione hash
Uniformità semplice: Pr[h(k)=j] ~ 1/|K| La probabilità è calcolata rispetto alla distribuzione delle chiavi Intuitivamente, si desidera che gli elementi si distribuiscano nell’array in modo uniforme Difficile costruire funzioni che soddisfino la proprietà D.: perché? Hashing
10
Requisiti di una funzione hash/2
Esempio: sia |T|=5 e h(k)=k mod 5 {1, 7, 10, 14} {1, 6, 11, 16} 1 2 3 4 1 2 3 4 Non è nota la distribuzione delle chiavi Può aversi agglomerazione degli elementi In pratica: si cerca di avere indipendenza dai dati Hashing
11
Paradosso del compleanno
scelti 23 individui a caso, la probabilità che due di essi abbiano lo stesso compleanno è > ½ (50.7%) dimostrare! in termini di hashing, anche ipotizzando di avere le pseudochiavi a distribuzione uniforme, dopo 22 inserimenti in una tabella di 365 celle, ogni ulteriore inserimento avrà probabilità superiore a ½ di generare una collisione Hashing
12
Interpretazione delle chiavi
Tra gli elementi di K è definito un ordinamento totale ma: Le chiavi non sono necessariamente numeri naturali Es.: stringhe Soluzione: associare a ciascuna chiave un intero Modalità dipendono da insieme delle chiavi e applicazione Hashing
13
Esempio: stringhe Possibile metodo: associare a ciascun carattere il valore ASCII e alla stringa il numero intero ottenuto in una base scelta Esempio: base 2, posizioni meno significative a destra Stringa = “pt” pseudochiave = 112*21+116*20=340 Ascii(‘p’)=112 Ascii(‘t’)=116 Hashing
14
Derivazione di funzioni hash
Molti metodi Divisione Ripiegamento Mid-square Estrazione Obiettivo: distribuzione possibilmente uniforme Differenze: Complessità Fenomeni di agglomerazione Hashing
15
Divisione h(k)=k mod |T| - Bassa complessità
Attenzione ai fenomeni di agglomerazione No potenze di 2: se m=2p allora tutte le chiavi con i p bit meno significativi uguali collidono No potenze di 10 se le chiavi sono numeri decimali (motivo simile) In generale, la funzione dovrebbe dipendere da tutte le cifre della chiave (comunque rappresentata) Scelta buona in pratica: numero primo non troppo vicino a una potenza di 2 (esempio: h(k)=k mod 701 per |K|=2048 valori possibili) Hashing
16
Ripiegamento Chiave k suddivisa in parti k1,k2,....,kn
h(k)=f(k1,k2,....,kn) Esempio: la chiave è un No. di carta di credito. Possibile funzione hash: {477, 264, 537, 348} 2. f(477,264,537,348) = ( )mod 701 = 224 Hashing
17
Estrazione Si usa soltanto una parte della chiave per calcolare l’indirizzo Esempio: 6 cifre centrali del numero di carta di credito Il numero ottenuto può essere ulteriormente manipolato L’indirizzo può dipendere da una porzione della chiave Hashing
18
Risoluzione delle collisioni
I metodi si distinguono per la collocazione degli elementi che danno luogo alla collisione Concatenazione: alla i-esima posizione della tabella è associata la lista degli elementi tali che h(k)=i Indirizzamento aperto: tutti gli elementi sono contenuti nella tabella Hashing
19
Concatenazione h(k1)= h(k4)=0 h(k5)= h(k7)=h(k2)=4 1 2 3 4
1 2 3 4 k1 k4 k2 k5 k7 k2 Es.: h(k)=k mod 5 k1=0, k4=10 k5=9, k7=14, k2=4 Hashing
20
Concatenazione/2 insert(el, k): inserimento in testa alla lista associata alla posizione h(k) – costo O(1) search(k): ricerca lineare nella lista associata alla posizione h(k) – costo O(lungh. lista associata a h(k)) delete(k): ricerca nella lista associata a h(k), quindi cancellazione – costo O(lungh. lista associata a h(k)) Hashing
21
Indirizzamento aperto
Tutti gli elementi sono memorizzati nella tabella Le collisioni vanno risolte all’interno della tabella Se la posizione calcolata è già occupata occorre cercarne una libera I diversi metodi ad indirizzamento diretto si distinguono per il metodo di scansione adottato La funzione hash può dipendere anche dal numero di tentativi effettuati Indirizzo=h(k, i) per l’i-esimo tentativo Hashing
22
Inserimento insert (el, k) { /* T denota la tabella */ i=0;
while (h(k, i) <occupata> && (i<|T|)) i++; if (i < |T|) <inserisci el in pos. i> else <overflow> } Hashing
23
Ricerca search (k) { /* T denota la tabella */ i=0;
while ((k!=key(T[h(k, i)])) && (i<|T|)) i++; if (i < |T|) <restituisci T[h(k, i)]> else <elemento assente> } Hashing
24
Cancellazione delete (k) { /* T denota la tabella */ search(k);
if (<trovato>) <elimina elemento con chiave k> } Hashing
25
Scansione La funzione h(k, i) deve essere tale che tutte le posizioni della tabella siano esaminate Sono possibili diverse forme per la funzione h(k,i) Scansione lineare Scansione quadratica Hashing doppio Si differenziano per complessità e comportamento rispetto a fenomeni di agglomerazione Hashing
26
Scansione lineare h(k, i) = (h’(k)+i) mod |T|, dove h’(k) è una funzione di hashing Si scandiscono tutte le posizioni nella sequenza T[h’(k)], T[h’(k)]+1, .... T[|T|], 0, 1, ...., T[h’(k)]-1 Possibilità di agglomerazione primaria: gli elementi si agglomerano per lunghi tratti agglomerazione primaria = due sequenze di scansione che hanno una collisione rimangono collidenti Hashing
27
Agglomerazione primaria
h(k, i) = (h’(k)+i) mod 101, h’(k)=k mod 101 1 2 {2, 103, 104, 105,....} Caso estremo, ma il problema esiste 100 Hashing
28
Scansione quadratica h(k, i) = (h’(k)+c1i+c2i2) mod |T|, dove h’(k) è una funzione di hashing, c1 e c2 sono costanti es. indirizzi scanditi: h’(k), h’(k)+1, h’(k)+2,h’(k)+3… Es.: h(k, i) = h’(k)+i2, h(k, i+1) = h’(k)+(i+1)2, i=1,..., (|T|-1)/2 Possibilità di agglomerazione secondaria: se h’(k1)= h’(k2) h’(k1,i)= h’(k2,i) Descrivere h(k, i) quando h’(k)=k mod |5| Hashing
29
Hashing doppio h(k, i) = (h1(k)+ih2(k)) mod |T|, dove h1(k) e h2(k) sono funzioni di hashing Anche la modalità di scansione dipende dalla chiave L’hashing doppio riduce i fenomeni di agglomerazione secondaria esente da quelli di agglomerazione primaria Hashing
30
Hashing estendibile E’ usato nella gestione di file, la cui dimensione può variare. Es.: file ad accesso diretto Il file è organizzato in bucket, ciascuno dei quali ha una dimensione fissa Gli indirizzi sono associati ai bucket La funzione hash restituisce in questo caso un puntatore al bucket Hashing
31
Hashing estendibile/2 File h(k) restituisce una stringa binaria b
I bit più significativi di b sono usati per determinare l’indirizzo del bucket 2 Lungh. locale Bucket 00 Lungh. globale h(k)=11001 2 2 Bucket 01 00 01 10 1 Bucket 1 11 Indice Hashing
32
Esempio File File Dim. Bucket = 4 01100 00001 h(k)=00101 00101 00001
2 Bucket 0 Bucket 00 01100 00001 00001 00101 h(k)=00101 1 2 2 00 Bucket 01 1 01 01100 1 10 Indice Bucket 1 10010 11 Indice 1 10010 Bucket 1 Dim. Bucket = 4 Hashing
33
H. estendibile - Inserimento
extHashInsert (el, k) { /* L=lunghezza globale */ str=h(k); /* LS= lunghezza str */ p=indice[pattern[LS-1...LS-L]]; if (<Bucket puntato da p non pieno) <inserisci el> else { <suddividi bucket> /* l=lunghezza locale bucket*/ l++; } if (l > L) <Raddoppia indice> L++; Hashing
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.