La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Le tracce di questanno: sottile invito alla riflessione sul come porre un problema e sulle strategie di risoluzione. Problem posing e problem solving.

Presentazioni simili


Presentazione sul tema: "Le tracce di questanno: sottile invito alla riflessione sul come porre un problema e sulle strategie di risoluzione. Problem posing e problem solving."— Transcript della presentazione:

1

2 Le tracce di questanno: sottile invito alla riflessione sul come porre un problema e sulle strategie di risoluzione. Problem posing e problem solving. Polya e quarto punto del secondo problema dellindirizzo di ordinamento. Salerno 28-29-30 Agosto 2012 2

3 Una superficie triangolare è racchiusa da un segmento AB e da due archi di circonferenza AC e BC. Il centro di una delle circonferenze è A, il centro dellaltra è B, ed ognuna delle due circonferenze passa per il centro dellaltra. Inscrivere in questa figura triangolare una circonferenza tangente a tutte tre le linee del contorno. Salerno 28-29-30 Agosto 2012 3

4 Risoluzione di Polya: i vari passi a)Ricerca del centro circonferenza richiesta b)Lascia cadere una condizione: Trova che il luogo dei centri di tali circonferenze ha equazione : x 2 = a 2 - 2ay con a = AB e quindi … Salerno 28-29-30 Agosto 2012 4

5 Quarto punto del problema 2 del corso di ordinamento come rivisitazione del problema affrontato da Polya : Nel primo quadrante del sistema di riferimento Oxy sono assegnati larco di circonferenza di centro O e estremi A(3,0) e B(0,3) e larco L della parabola di equazione x 2 = 9 – 6y i cui estremi sono il punto A e il punto ( 0,3/2). Si provi che larco L è il luogo geometrico descritto dai centri delle circonferenze tangenti internamente allarco AB e allasse x. Infine, tra le circonferenze di cui L è il luogo dei centri si determini quella che risulta tangente anche allarco di circonferenza di centro A e raggio 3. Salerno 28-29-30 Agosto 2012 5

6 6 O A B L

7 7 La domanda finale del problema è la domanda iniziale di Polya Questa formulazione ha aiutato i candidati ? Conclusione : il come porre un problema è una questione importante. Esiste, di un problema, una sola formulazione significativa?

8 Interessante il punto 3 per ciò che riguarda le strategie di risoluzione. Salerno 28-29-30 Agosto 2012 8 Su come porre un problema è utile riflettere anche sul problema 1 PNI. Che in un certo senso inverte il modo usuale di porre i problemi.

9 Della funzione f, definita per 0 x 6, si sa che è dotata di derivata prima e seconda e che il grafico della sua derivata f '(x), disegnato a lato, presenta due tangenti orizzontali per x = 2 e x = 4. Si sa anche che f (0) = 9, f (3) = 6 e f (5) = 3. Salerno 28-29-30 Agosto 2012 9

10 1. Si trovino le ascisse dei punti di flesso di f motivando le risposte in modo esauriente. 2. Per quale valore di x la funzione f presenta il suo minimo assoluto? Sapendo che: per quale valore di x la funzione f presenta il suo massimo assoluto? 3. Sulla base delle informazioni note, quale andamento potrebbe avere il grafico di f ? 4. Sia g la funzione definita da g(x) = x f (x). Si trovino le equazioni delle rette tangenti ai grafici di f e di g nei rispettivi punti di ascissa x = 3 e si determini la misura, in gradi e primi sessagesimali, dellangolo acuto che esse formano. Salerno 28-29-30 Agosto 2012 10

11 Richiesta del punto 3. In realtà la richiesta da soddisfare Salerno 28-29-30 Agosto 2012 11 Semplice ? non era tanto semplice

12 Della funzione f, definita per 0 x 6, si sa che è dotata di derivata prima e seconda e che il grafico della sua derivata f '(x), disegnato a lato, presenta due tangenti orizzontali per x = 2 e x = 4. Si sa anche che f (0) = 9, f (3) = 6 e f (5) = 3. Salerno 28-29-30 Agosto 2012 12

13 0 1 2 3 4 5 6 7 8 134562 Salerno 28-29-30 Agosto 2012 13

14 0 1 2 3 4 5 6 7 8 134562 Salerno 28-29-30 Agosto 2012 14

15 0 1 2 3 4 5 6 7 8 134562 Salerno 28-29-30 Agosto 2012 15


Scaricare ppt "Le tracce di questanno: sottile invito alla riflessione sul come porre un problema e sulle strategie di risoluzione. Problem posing e problem solving."

Presentazioni simili


Annunci Google