Scaricare la presentazione
La presentazione è in caricamento. Aspetta per favore
PubblicatoMarina Rubino Modificato 8 anni fa
1
IL CONTRIBUTO DELLA VALUTAZIONE ESTERNA AL MIGLIORAMENTO EDUCATIVO
A cura di Patricia Tozzi La presentazione contiene slides di Stefania Pozio, Emanuela Botta e Caterina Manco
2
Le PROVE INVALSI……………. verso lo sviluppo delle COMPETENZE per applicare la matematica in contesti diversi
3
Piano di I N 2012 Miglioramento ORGANICO POTENZIATO CURRICOLO
LA SCUOLA CHE CAMBIA…… Piano di Miglioramento I N 2012 PTOF ORGANICO POTENZIATO RAV INVALSI COMPETENZE CURRICOLO E’ un momento di grande cambiamento nella scuola che richiede assunzione di grande responsabilità da parte dei docenti Patricia TOZZI
4
Grandi cambiamenti...grandi riflessioni
… Scuola del Programma ministeriale Scuola della programmazione per obiettivi Scuola dell’autonomia: dalla scuola dell’insegnamento a quella apprendimento I processi di costruzione della conoscenza sono complessi Vi sono intelligenze multiple e non si apprende solo con il pensiero lineare. Si apprende meglio con la didattica laboratoriale Diventano centrali le COMPETENZE e la loro certificazione.
5
I Programmi e le Indicazioni Nazionali
Non esistono più Programmi,esistono le IN I traguardi per lo sviluppo delle competenze sono i criteri che devono guidare il nostro insegnamento, rappresentano punti di riferimento posti al termine dei più significativi snodi del percorso curricolare e non sono i livelli di apprendimento Gli obiettivi di apprendimento sono obiettivi ritenuti strategici al fine di raggiungere i traguardi di sviluppo delle competenze 5
6
DEFINIZIONI IMPORTANTI……
Contenuto: un dato, una informazione, un capitolo di storia, una poesia, una regola, una formula, un teorema, un testo qualsiasi, un libretto di istruzioni… Conoscenza: acquisizione/archiviazione cognitiva di un determinato contenuto Capacità: la possibilità che un soggetto ha di raggiungere un dato obiettivo Abilità: la prestazione attesa e realizzata da un soggetto che ha appreso Obiettivo: la prestazione richiesta a un soggetto in apprendimento Obiettivo formativo :dice ciò che c’è da imparare in termini di memorizzazione ,addestramento ,assimilazione:E’ strumentale al conseguimento dei TRAGUARDI DI COMPETENZE Traguardi di competenze :criteri che devono guidare il nostro insegnamento, rappresentano punti di riferimento posti al termine dei più significativi snodi del percorso curricolare 6
7
QUALI COMPETENZE………………
Competenza (ambito scolastico): CONOSCENZE e ABILITA’ apprese e consolidate raggiunte da un soggetto in apprendimento e capacità di utilizzarle in contesti nuovi e più complessi; Competenza (ambito lavorativo): la prestazione complessa di un soggetto esperto (estetista, commesso, architetto, insegnante, autista, pianista) Competenza – “la capacità dimostrata da un soggetto di utilizzare le conoscenze, le abilità e le attitudini (atteggiamenti) personali (il Sé), sociali (il Sé e gli Altri) e/o metodologiche (il Sé e le Cose) in situazioni di lavoro o di studio e nello sviluppo professionale e/opersonale. Nel Quadro Europeo delle Qualifiche le competenze sono descritte in termini di responsabilità e autonomia” 7
8
IL COSTRUTTO DELLA COMPETENZA
Prestazioni osservabili del soggetto L’iceberg della competenza * Componente latente che richiede l’esplorazione di dimensioni interiori connesse ai processi motivazionali, volitivi, socioemotivi MOTIVAZIONE CONSAPEVOLEZZA SENSIBILITA' AL CONTESTO RUOLO SOCIALE STRATEGIE METAGOGNITIVE IMPEGNO ABILITA' CONOSCENZE * Castoldi, 2009
9
LA COMPETENZA Un soggetto è competente quando:
La competenza non risiede nelle risorse (conoscenze, capacità…), ma nella mobilitazione di queste risorse . il soggetto è attivo nell’apprendimento: non subisce l’esperienza ma la costruisce attraverso le risorse conoscitive, tecniche, relazionali, emotive ed affettive e i processi metacognitivi interni Un soggetto è competente quando: utilizza in modo consapevole conoscenze e abilità in contesti nuovi e più complessi; conosce il perché e sceglie adeguate strategie La competenza: non è una singola performance, non è una semplice dimostrazione di una conoscenza acquisita coinvolge non solo le conoscenze che la persona via via acquisisce ma tutte le variabili che costituiscono la persona stessa. ptozzi VOTI O GIUDIZI? Napoli
10
… e “ce lo chiede” anche l’Europa!!!
CERTIFICARE COMPETENZE la COMPETENZA come punto di arrivo del nostro “Sistema Educativo di Istruzione e Formazione” … e “ce lo chiede” anche l’Europa!!! Dall’insegnamento per conoscenze a all’apprendimento per competenze educare il cittadino a partecipare formare la persona a essere istruire il lavoratore a fare ATTENZIONE!!! MISURARE VALUTARE CERTIFICARE sono operazioni diverse!!!
11
Raccomandazione del Parlamento Europeo e del Consiglio adottata il 18 Dic. 2006
Comunicazione in madrelingua : capacità di esprimere e interpretare concetti, pensieri, fatti, in forma sia orale che scritta e di interagire in una vasta gamma di contesti culturali e sociali. Competenze in matematica : abilità di sviluppare e applicare il pensiero matematico per risolvere problemi in situazioni quotidiane Competenze in scienze e tecnologia: Capacità a usare l’insieme delle conoscenze e delle Metodologie per spiegare la realtà. Applicazione delle conoscenze e Metodologie tecnologiche per dare risposte ai bisogni avvertiti dagli esseri umani. Comunicazione nelle lingue straniere: abilità di comprensione ed espressione orale e scritta Imparare ad imparare: abilità di perseverare nell’apprendimento e di saperlo organizzare superando gli ostacoli per apprendere in modo efficace Spirito di iniziativa e imprenditorialità: tradurre le idee in azione Competenze sociali e civiche : partecipare in modo costruttivo ed efficace alla vita sociale e lavorativa. Espressione culturale e identità storica: espressione creativa di idee, esperienze ed emozioni in una ampia varietà di mezzi di comunicazione. Competenza digitale : saper utilizzare con spirito critico le tecnologie della società dell’informazione per vari scopi.
12
Raccomandazioni Parlamento Europeo del 2006 e 2008
COMPETENZE CITTADINANZA BUON CITTADINO Racc 2008 COMPETENZE CULTURALI BRAVO INGEGNERE??? Chi è il bravo ingegnere?
13
I DOCUMENTI FONDANTI Raccomandazione del Parlamento europeo e del Consiglio del 18 dicembre Competenze chiave di cittadinanza per l’apprendimento permanente Raccomandazione del Parlamento europeo e del Consiglio del 23 aprile European Qualifications Framework (EQF) Il Quadro Europeo delle Qualifiche, "European Qualifications Framework ” (EQF), è un sistema che permette di confrontare titoli di studio e qualifiche professionali dei cittadini dei paesi europei. I risultati di apprendimento sono definiti in termini di Conoscenze, Abilità e Competenze
14
UN QUADRO DI RIFERIMENTO
Raccomandazioni UE 06 FRANCIA SPAGNA ITALIA Comunicazione nella madrelingua Padronanza lingua Competenza in comunicazione linguistica Comunicare Comunicazione nelle lingue straniere Uso lingua straniera Competenza matematica e competenze di base in scienza e tecnologia Competenza di base matematica scientifica e tecnologica Competenza matematica Risolvere problemi Individuare collegamenti e relazioni Conoscere e interagire con mondo fisico Competenza digitale; Padronanza TIC Imparare ad imparare Apprendere ad apprendere Competenze sociali e civiche Collaborare e partecipare Spirito di iniziativa e imprenditorialità; Autonomia e capacità di iniziativa Autonomia e iniziativa personaler Progettare Consapevolezza ed espressione culturale Cultura umanistica Competenza culturale ed artistica Acquisire ed interpretare l’informazione
15
LA SCELTA ITALIANA Costruzione del sé ● Imparare ad imparare – organizzare il proprio apprendimento secondo metodi e tempi adeguati e implementarlo sapendo cercare e selezionare le opportune informazioni ● Progettare – utilizzare le conoscenze apprese per proporsi obiettivi ulteriori di studio e orientarsi in ordine a scelte future Relazioni con gli altri ● Comunicare – comprendere e produrre informazioni e messaggi di diversa natura (famigliare, amicale, vita quotidiana) e veicolati con diversi supporti (cartacei, informatici, multimediali) ● Collaborare e partecipare – interagire nel gruppo dei pari comprendendo i diversi punti di vista, sostenendo i propri, gestendo con successo le eventuali difficoltà ● Agire in modo autonomo e responsabile – avvertire le possibilità e i limiti del proprio operare e comprendere quali effetti possano produrre scelte ed azioni personali nei confronti degli altri Rapporto con la realtà naturale e sociale ● Risolvere problemi – affrontare e risolvere situazioni problematiche costruendo e verificando ipotesi, utilizzando le risorse opportune e valutando secondo criteri dati i risultati ottenuti ● Individuare collegamenti e relazioni – cercare e trovare ci che lega e divide oggetti, fatti, concetti diversi, lontani nello spazio e nel tempo, cogliendone la natura sistemica ● Acquisire e interpretare l ’ informazione – comprendere valori ed effetti delle informazioni ricevute con strumenti diversi in ordine a diversi ambiti disciplinari, distinguendo i fatti dalle opinioni
16
COSA FACCIAMO A SCUOLA Valutare giudizio Certificare attestato
Misurare CONTARE GLI ERRORI UN VOTO VALUTA UNA PRESTAZIONE E NON L'ALUNNO QUANDO VIENE ANALIZZATA UNA PROVA di VERIFICA; SI MISURA SOLO IL RISULTATO DI UN PRODOTTO. Valutare giudizio La valutazione si realizza in diversi momenti del processo di apprendimento e prende in considerazione non solo le misurazioni ma l’intero vissuto scolastico dell’alunno,la frequenza, la partecipazione, la progressione e la situazione personale dell’allievo Certificare attestato è l’esito di un lungo periodo di osservazioni sistematiche Per consentire ad ogni allievo, di “conoscere la propria posizione rispetto a livelli di apprendimento e quadri di competenze che rispondano a riferimenti di carattere generale e che sono gli stessi in tutti i paesi Europei”. 16
17
La presentazione contiene slides di Stefania Pozio,e Emanuela Botta
educare il cittadino a partecipare formare la persona a essere istruire il lavoratore a fare LA SCUOLA DELLA COMPETENZA a cura di P.Tozzi io partecipo io faccio io sono La presentazione contiene slides di Stefania Pozio,e Emanuela Botta Le PROVE INVALSI…………….verso lo sviluppo delle COMPETENZE per applicare la matematica in contesti diversi 17
18
LA SCUOLA DELLA COMPETENZA : ISTRUIRE – EDUCARE - FORMARE:
I CONTENUTI SONO UN MEZZO – CONTA LA CULTURA CHE NE SCATURISCE… che ci aiuta a “Uscire dai recinti delle discipline per abitare la complessità del mondo” Edgard Morin 18
19
DALLE INDICAZIONI NAZIONALI 2012…..
La nostra didattica era/è fondata prevalentemente su una concezione trasmissiva dell'apprendimento, che è di tipo riproduttivo,centrata sull'atto dell'insegnare, Le conoscenze sono stabili e spesso lineari e rigide e seguono libro di testo.I campi disciplinari sono rigidamente divisi. “Le trasmissioni standardizzate e normative delle conoscenze che comunicano contenuti invarianti pensati per individui medi,non sono più adeguate ….” “La scuola è chiamata a realizzare percorsi formativi sempre più rispondenti alle inclinazioni personali degli studenti e ad orientare la propria didattica alla costruzione di saperi a partire da concreti bisogni formativi ……” 19 Patricia TOZZI
20
LA SCUOLA IERI. OGGI e DOMANI
Oggi le conoscenze sono soggette a revisioni e aggiornamenti vertiginosamente rapidi. Bisogna lavorare per far raggiungere le competenze chiave di cittadinanza che si situano nelle aree di confine delle discipline e ne esaltano le interazioni interdisciplinari.
21
E’ centrata sull’insegnamento di contenuti
DIDATTICA PER OBIETTIVI DIDATTICA PER COMPETENZE E’ centrata sull’insegnamento di contenuti E’ centrata sull’apprendimento, sul problem solving e sul dare senso a ciò che si apprende Insegnante spiega, alunno studia, insegnante interroga L’alunno apprende facendo e cooperando con gli altri. L’insegnate è il tutor Il contenuto rimane spesso fine a se stesso Il contenuto ha senso perché collegato alla realtà e alle altre discipline Si misura il grado di acquisizione dei contenuti Si valuta l’evoluzione dell’alunno e la sua capacità di autovalutarsi e di applicare conoscenze in contesti più ampi e complessi
22
La valenza formativa…..della matematica
Uno degli aspetti fondamentali della matematica deve essere l’attitudine ad astrarre, ad operare con oggetti astratti. Ma non può essere più la sola modalità…… La valenza concreta e trasversale parte da competenze trasversali comuni a tutte le discipline, che sono poi le competenze richieste e indagate nelle indagini OCSE PISA e nelle prove INVALSI 22
23
La valenza formativa…..delle discipline
Anche alla matematica si chiedono conoscenze applicabili in contesti che non si esauriscano in quello scolastico. Prima si chiedeva alla matematica di dare conoscenze e abilità codificate per lo più in forma astratta…. Non dobbiamo tradire la valenza formativa delle discipline ma è inevitabile cambiare alcuni approcci…… La prima lezione di matematica……… 23
24
Organizzazione delle rilevazioni
Messa a punto delle prove di pretest ca 10 ESPERTI per livello e RICERCATORI INVALSI Formulazione dei quesiti ca 200 AUTORI revisione DURATA: 2 o 3 anni Analisi dei risultati del PRE TEST ca 10 ESPERTI per livello e RICERCATORI INVALSI PRE TEST ca 5000 STUDENTI L08 revisione Composizione delle prove di main study ca 10 ESPERTI per livello e RICERCATORI INVALSI
25
Organizzazione delle rilevazioni
Formulazione dei quesiti (numero di quesiti tre o quattro volte superiore a quello che effettivamente compare nella prova stessa somministrata agli allievi) 200 docenti ed esperti provenienti dal mondo della scuola e dell’università. il consistente numero di autori rende possibile disporre di un’ampia varietà di quesiti sia rispetto alla modalità di formulazione sia rispetto ai contenuti. se si vuole evitare che si inducano nella scuola fenomeni non desiderabili di addestramento alle prove standardizzate è necessario che queste siano molto varie da un anno all’altro, sia rispetto ai contenuti sia alle modalità con le quali i quesiti sono formulati. 25
26
La finalità delle rilevazioni INVALSI in MATEMATICA
Fornire alle scuole uno strumento di confronto a livello nazionale, a livello di macro-area, a livello regionale Fornire alle scuole uno strumento di confronto con scuole che hanno un background socio-economico e culturale(ESCS) simile (valore aggiunto della scuola) Fornire alle singole scuole uno strumento di diagnosi per migliorare il proprio lavoro e individuare le aree di eccellenza e quelle problematiche nelle discipline oggetto della rilevazione. Sono una FOTOGRAFIA dei LIVELLI MEDI sugli apprendimenti in Lettura e Matematica 26
27
Misurazione o Valutazione?
Le prove INVALSI hanno lo scopo principale di misurare i livelli di apprendimento raggiunti dagli studenti italiani relativamente ad alcuni aspetti di base di due ambiti fondamentali: la comprensione della lettura e la matematica che ,è dimostrato,hanno un ruolo di primo piano nell’avanzamento individuale e dell’intera società Gli ambiti oggetto di misurazione delle prove INVALSI non esauriscono di certo i saperi e le competenze prodotte dalla scuola.
28
DALLE INDICAZIONI NAZIONALI 2012…..
“Il sistema nazionale di valutazione ha il compito: di rilevare la qualità dell’intero sistema scolastico fornire alle scuole, alle famiglie e alla comunità sociale, al Parlamento e al Governo elementi di informazione essenziali circa la salute e le criticità del nostro sistema di istruzione. L’INVALSI: rileva e misura gli apprendimenti con riferimento ai traguardi e agli obiettivi previsti dalle Indicazioni, promuove cultura della valutazione che scoraggi qualunque forma di addestramento finalizzata all’esclusivo superamento delle prove. “ 28
29
STRUTTURA del Quadro di Riferimento Competenza matematica in INVALSI
3.Argomentare Produrre, verificare e giustificare affermazioni, in modo formale o non formale, comprendere testi che coinvolgono aspetti logici e matematici, costruire ragionamenti. 2.Risolvere problemi Risolvere problemi riferibili sia ad aspetti interni alla matematica sia ad aspetti applicativi collegati ad ambiti scientifici (economico, sociale, tecnologico) o, più in generale, al mondo reale 1.Conoscere Conoscere concetti, algoritmi, procedure e farne un uso consapevole. DIMENSIONI Le dimensioni sono un raggruppamento dei traguardi (obiettivi o risultati di apprendimento), fondato sull’idea che le attività matematiche si riferiscano essenzialmente o all’argomentare o al risolvere problemi e che queste due non siano completamente indipendenti l’una dall’altra e richiedano conoscenze su concetti, linguaggio formale e procedure.
30
Per quanto riguarda le prove delle classi SECONDA e QUINTA Scuola Primaria
Ogni domanda viene collegata a un Traguardo per lo sviluppo delle competenze al termine della scuola Primaria, e ogni Traguardo a una delle dimensioni : Conoscere, Risolvere problemi, Argomentare NB: i risultati della classe seconda sono abbastanza omogenei in tutte le macroaree con % di risposte errate dal 51% nell’ambito Numeri al 58% in quello Spazio e Figure e 57% Dati e Previsioni. Per loro no RELAZIONI E FUNZIONI I risultati della classe quinta molto al di sopra media nazionale nel Nord est, molto negativi sud e isole ,nella media il centro.
31
Per quanto riguarda la Prova Nazionale
il collegamento avviene con i Traguardi per lo sviluppo delle competenze al termine della scuola Secondaria di primo Grado . Le dimensioni che si vanno ad esplorare sono: Conoscere, Risolvere problemi, Argomentare I risultati sono superiori alla media nelle macroaree nord-est e nord-ovest ,nella media al centro ,sotto la media sud e isole
32
Tabella scuola primaria
32 32
34
STRUTTURA del Quadro di Riferimento
INDICAZIONI NAZIONALI AMBITI Numeri Spazio e figure Relazioni e funzioni Dati e previsioni Gli AMBITI di contenuto fanno esplicito riferimento a quelli delle indicazioni nazionali. ARITMETICA GEOMETRIA STATISTICA DIMENSIONI Conoscere Risolvere problemi Argomentare PROCESSI 34 34
35
Scopo delle misurazioni:
NON Valutare!!! Scopo delle misurazioni: Le prove INVALSI hanno lo scopo principale di misurare i livelli di apprendimento raggiunti dagli studenti italiani relativamente ad alcuni aspetti di base di due ambiti fondamentali: la comprensione della lettura e la matematica. La letteratura dimostra che la conoscenza in alcune discipline fondamentali (lettura, matematica) ha un ruolo di primo piano nell’avanzamento individuale e dell’intera società gli ambiti oggetto di misurazione delle prove INVALSI non esauriscono di certo i saperi e le competenze prodotte dalla scuola. 35
36
I fattori a monte della diffusione di forme di valutazione esterna degli apprendimenti da parte invalsi la confrontabilità dei voti scolastici e dei titoli di studio all’interno di un paese Esigenza di trasparenza sul valore dei titoli e delle certificazioni, considerato che le valutazioni degli insegnanti non sono comparabili. Questa esigenza è resa più forte dalla apertura dei confini e dalla conseguente necessità di favorire la mobilità della forza lavoro e il riconoscimento delle qualificazioni nel mercato comune. 36
37
Indagini internazionali e nazionali: diversi obiettivi
Indagini internazionali: di sistema offrono dati sulle prestazioni degli studenti comparabili a livello internazionale permettono di individuare punti di forza e di debolezza del proprio sistema scolastico ricercano fattori antecedenti e correlati del profitto scolastico (e in che misura operano nello stesso modo in diversi contesti) … Indagini nazionali: dal sistema alle singole scuole accertano i livelli di apprendimento degli studenti italiani in italiano e in matematica offrono dati comparabili a livello nazionale, regionale e a livello di singola scuola e classe ATTENZIONE:La composizione di una prova standardizzata non risponde agli stessi criteri che guidano la costruzione delle verifiche di classe perché deve essere in grado di misurare i risultati degli studenti all’interno di una scala di abilità/competenza molto lunga, dai livelli più bassi a quelli di eccellenza. 37
38
Media OCSE 494 % della variazione dei punteggi in matematica spiegata dall’ESCS 14,6% media OCSE
39
Risultati in Matematica PISA 2012 e spesa per studente
La spesa per l’istruzione spiega meno del 20 per cento delle diversità di rendimento tra studenti nei paesi industrializzati: la differenza sta nel come le risorse vengono investite In migliaia di dollari USA convertiti usando la parità di potere d’acquisto Italia e Singapore più o meno la stessa spesa (85000 $) ma punteggi molto differenti (485 versus 573) 39
40
Risultati in Matematica PISA 2012 e spesa per studente
In migliaia di dollari USA convertiti usando la parità di potere d’acquisto 40
41
Cosa è PISA? PISA (Programme for International Student Assessment) – OCSE (Organizzazione per la Cooperazione e lo Sviluppo Economico) Indagine internazionale promossa per rilevare le competenze dei quindicenni scolarizzati. Si svolge con periodicità triennale (prima indagine 2000). Verifica se, e in che misura, i giovani che escono dalla scuola dell’obbligo abbiano acquisito alcune competenze giudicate essenziali per svolgere un ruolo consapevole e attivo nella società e per continuare ad apprendere per tutta la vita. 41
42
Caratteristiche di PISA
Tre ambiti di literacy: lettura, matematica e scienze + problem-solving Periodicità triennale con un’area di contenuti principale in ciascun ciclo PISA 2000/2009 lettura, PISA 2003/2012 matematica, PISA 2006/2015 scienze Popolazione bersaglio: i quindicenni scolarizzati PISA 2015: nati nel 1999 In ogni Paese il campione è costituito da un minimo di 200 scuole con un campione di 42 studenti per scuola + grade based, cioè una classe seconda (in Italia circa 493 scuole) 42
43
Il concetto di LITERACY
PISA esplicita le competenze non tanto in termini di padronanza di programmi scolastici quanto piuttosto in termini di conoscenze importanti e di abilità necessarie nella vita adulta.. “literacy” è il termine con il quale si vuole indicare l’insieme delle conoscenze e delle abilità possedute da un individuo e la sua capacità di utilizzarle. Il concetto di “literacy” originariamente è stato concepito al fine di misurare non gli apprendimenti scolastici, ma le capacità di utilizzare gli stessi in un contesto di vita reale, per realizzare la propria identità di persona,cittadino e lavoratore reale, per realizzare la propria identità di persona,cittadino e lavoratore 43
44
STRUTTURA del Quadro di Riferimento Competenza matematica in PISA
Formulare riconoscere ed identificare le opportunità di utilizzare la matematica in situazioni problematiche esprimere il problema contestualizzato in una forma matematica. Utilizzare effettuare calcoli e manipolazioni e applicare i concetti e i fatti che si conoscono per arrivare ad una soluzione matematica di un problema formulato matematicamente. Interpretare riflettere in modo efficace su soluzioni e conclusioni matematiche, interpretandole in un contesto di un problema della vita reale, e determinare se i risultati o le conclusioni a cui si è giunti siano ragionevoli. Processi Contenuti matematici Quantità (aritmetica) Spazio e forma (geometria) Cambiamento e relazioni (algebra e relazioni e funzioni) Incertezza e dati (statistica e probabilità). Contesti Personale Occupazionale Pubblico Scientifico
45
Un consiglio comunale vuole posizionare un palo della luce in un parco pubblico di forma triangolare in modo che il parco sia illuminato in modo omogeneo. In quale punto è meglio che posizioni il palo della luce?
46
Impiegare concetti, fatti, procedure e ragionamenti matematici (employ)
Capacità di un individuo di applicare concetti, fatti,procedure e ragionamenti per risolvere problemi matematici al fine di ottenere conclusioni matematiche.
47
47
48
Interpretare, applicare e valutare risultati matematici (interpret)
Capacità di un individuo di riflettere su soluzioni, risultati e conclusioni matematiche e interpretarle alla luce del contesto dei problemi di vita reale. Questo comprende anche il saper tradurre le soluzioni o i ragionamenti ritornando al contesto del problema e determinare se i risultati hanno senso in quel determinato contesto. RIFIUTI Nell’ambito di una ricerca sull’ambiente, gli studenti hanno raccolto informazioni sui tempi di decomposizione di diversi tipi di rifiuti che la gente butta via: Tipo di rifiuto Tempo di decomposizione Buccia di banana 1–3 anni Buccia d’arancia Scatole di cartone 0,5 anni Gomma da masticare 20–25 anni Giornali Pochi giorni Bicchieri di plastica Oltre 100 anni Uno studente prevede di presentare i risultati con un diagramma a colonne. Scrivi un motivo per cui un diagramma a colonne non è adatto per rappresentare questi dati.
49
IL TIMSS Trends in International Mathematics and Science Study.
Fornisce informazioni che permettono di migliorare l’insegnamento e l’apprendimento della matematica e delle scienze. Riguarda studenti di IV elementare e III media. Viene effettuato ogni 4 anni. Il primo ciclo è stato nel 1995 (41 paesi) e l’ultimo nel 2011 (circa 60 paesi). 49
50
Cosa intende misurare il TIMSS
Analisi dei curricoli delle nazioni partecipanti Su questa base, vengono definite le conoscenze e le competenze che verranno valutate Attraverso l’analisi dei risultati vengono definiti 4 livelli di competenza: avanzato, alto, intermedio, basso. Il test è rivolto agli studenti della stessa classe, e il questionario insegnante permette di interpretare i risultati degli studenti anche in relazione agli stili di insegnamento. 50
51
Livello basso Livello intermedio
52
Livello alto
53
Prove Invalsi 53 53
54
STRUTTURA del Quadro di Riferimento
Conoscere: conoscere concetti, algoritmi, procedure e farne un uso consapevole.
55
STRUTTURA del Quadro di Riferimento
Risolvere problemi: risolvere problemi riferibili sia ad aspetti interni alla matematica sia ad aspetti applicativi
56
STRUTTURA del Quadro di Riferimento
Argomentare: Produrre, verificare e giustificare affermazioni, in modo formale o non formale
57
Dimensione: Argomentare Ambito: Spazio e figure Traguardo Indicazioni nazionali Legge e comprende testi che coinvolgono aspetti logici e matematici
58
PN 2011 Liv. 8 Lo studente deve misurare, eventualmente tracciandola, l’altezza relativa ad uno dei lati (si noti che in questo caso due delle altezze sono esterne al triangolo), e poi effettuare calcoli con numeri decimali. Omiss corretta errata 19,6 29,0 51,4 22 24,9 53,1 58
59
ESEMPI DALLE CLASSI La risposta è corretta, l’altezza disegnata è quella interna al triangolo 59
60
Il segmento considerato NON è l’altezza del lato AB
ESEMPI DALLE CLASSI Il segmento considerato NON è l’altezza del lato AB 60
61
Lo studente moltiplica I due lati AB e AC
ESEMPI DALLE CLASSI Lo studente moltiplica I due lati AB e AC 61
62
Scatta il meccanismo “triangolo allora Pitagora”
ESEMPI DALLE CLASSI Scatta il meccanismo “triangolo allora Pitagora” 62
63
Scatta il meccanismo “triangolo alloraPitagora”
ESEMPI DALLE CLASSI Su 120 fascicoli analizzati (5 classi) NESSUNO disegna e considera le altezze esterne al triangolo! Scatta il meccanismo “triangolo alloraPitagora” 63
64
Dalle conoscenze alle competenze
IL TEOREMA DI PITAGORA Dalle indicazioni nazionali I ciclo. Traguardi al termine della scuola secondaria I ciclo: “Ha rafforzato un atteggiamento positivo rispetto alla matematica attraverso esperienze significative e ha capito come gli strumenti matematici appresi siano utili in molte situazioni per operare nella realtà”.
65
IL TEOREMA DI PITAGORA Dal libro di testo ……
66
III secondaria di I grado
…… Alle prove INVALSI III secondaria di I grado 2009 9% 10,2% 72,3% 5,3% Corrette 50,6% - Errate 28% - Parz. Corrette 17,5%
67
7,3% 45,0% 32,9% 12,9% III secondaria di I grado 2010
68
III secondaria di I grado 2011
8,6% 13,9% 54,7% 20,3%
69
II secondaria di II grado 2012
27% CORRETTE 28% ERRATE 43% OMESSE
70
Un esempio di analisi di un item di Matematica in sede di pre-test (III Sec. I grado 2013 – Item D24)
72
A18. Osserva la figura F. Quale delle seguenti figure non ha lo stesso perimetro della figura F? A. □ B. □ C. □ D. □
73
32,4% 17,5% 25,4% 15,2%
75
Analisi delle risposte aperte degli studenti
81
Omiss corretta errata 30,1 8,0 61,9 PN 2015 Liv. 8
82
ESEMPI DALLE CLASSI Tutto corretto fino a qua
83
ESEMPI DALLE CLASSI L’immancabile TdP
84
Corrette 29,3 Errate 47,4 Omesse 23,2
Il calcolo del m.c.m.: sempre per tentativi, nessuno studente che abbia usato la scomposizione in fattori primi Corrette 29,3 Errate 47,4 Omesse 23,2
85
Analisi delle risposte aperte degli studenti
80% risposte errate 14%risposte corrette
86
Alcune risposte degli studenti
Giulio ha ragione perché già si capisce dalla parola, ma anche perché l’unità di misura è di 1 cm Giulio ha ragione perché se un lato dell’ottagono è di 1 cm, l’ottagono ha 8 lati, quindi è di 8 cm Giulio ha ragione perché i lati sono 8 e sono tutti uguali Giulio ha ragione perché il lato di ogni quadrato è di 1 cm e dato che le diagonali misurano come il lato il perimetro di 8 cm Giulio ha ragione perché ha 8 lati e ogni lato misura 1 cm (anche i lati che tagliano il quadratino come una diagonale, perché essendo un quadrato misura uguale) Giulio ha ragione perché visto che il quadrato è uguale di diagonale basta vedere i suoi bordi quanti quadretti sono Giulio ha ragione perché anche i pezzetti tagliati a metà sono 1 cm
87
Lo scopo della domanda e la % di risposte corrette
48% risposte errate 43%risposte corrette 14,8% 16,7% 44,1% 19,6%
88
La risposta è corretta: siamo soddisfatti?
89
Prove in continuità Il primaria 2008/09
90
Prove in continuità V primaria 2008/09
91
Prove in continuità V primaria 40% corrette 48% errate
I secondaria di I grado 9% corrette 67% errate
92
Prove in continuità 30% corrette 27% omesse III secondaria di I grado
93
V primaria 78% Corrette II primaria Risposta corretta C 63% Corrette
94
- Conoscere e padroneggiare i contenuti specifici della matematica (oggetti matematici, proprietà, strutture...) AMBITO PREVALENTE: Numeri L’alunno deve interpretare correttamente il testo del problema e la consegna e calcolare quindi il doppio di 6. DEL CAMPIONE errata corretta Non risponde 57, , ,1
95
Classe quinta primaria
AMBITO PREVALENTE: Numeri Risposta corretta: D7a: B ,2% D7b: C % Il quesito richiede particolare attenzione alla consegna e implica una conoscenza sicura sul valore posizionale dei numeri decimali.
96
- Conoscere e utilizzare algoritmi e procedure (in ambito aritmetico, geometrico,…) Classe prima secondaria di 1° grado AMBITO PREVALENTE: Spazio e figure COMMENTO Il modo forse più semplice per risolvere questo quesito è scomporre il rettangolo in 4 triangoli Risposta corretta . D 14,1 %
97
Classe terza sec.I grado
AMBITO PREVALENTE: Numeri Risposta corretta: F V V F V F Non risponde E2a 24,5 74, ,4 E2b 91,3 7, ,8 E2c 56,6 42, ,1 E2d 15,0 83, ,3 COMMENTO Lo studente deve riconoscere le proprietà dell’operazione di radice quadrata. L’item c risulta per gli studenti il più complesso in quanto probabilmente non mettono in relazione l’operazione di radice quadrata con il suo inverso (elevamento al quadrato).
98
Classe seconda primaria
AMBITO PREVALENTE: Dati e previsioni Risposta corretta: F V F V V F D2a 52, ,8 D2b 78, ,4 D2c 4, ,2 D2d 68, ,9 COMMENTO Per rispondere lo studente deve saper interpretare una rappresentazione grafica di insiemi. In particolare deve riconoscere che l’intersezione tra insiemi rappresenta gli alunni che hanno utilizzato più mezzi di trasporto
99
- Conoscere diverse forme di rappresentazione e passare da una all'altra (verbale, numerica, simbolica, grafica, ...); Risposta corretta: B AMBITO PREVALENTE: Relazioni e funzioni Risposte corrette 47,3% COMMENTO Lo studente deve saper passare dal linguaggio verbale al linguaggio simbolico Una attività in classe su questo quesito potrebbe essere quella di tradurre in linguaggio verbale le risposte A, C e D e confrontarle con il testo della domanda.
100
- Risolvere problemi utilizzando strategie in ambiti diversi – numerico, geometrico, algebrico –
Risposta corretta: B Risposte corrette:43,5 AMBITO PREVALENTE: Numeri COMMENTO L’alunno deve essere in grado di dare un senso ad un’addizione, abbinandola a una situazione problematica adatta.
101
- riconoscere in contesti diversi il carattere misurabile di oggetti e fenomeni,utilizzare strumenti di misura, misurare grandezze, stimare misure di grandezze (individuareunità o lo strumento di misura più adatto in un dato contesto,stimare una misura,…). Classe quinta primaria AMBITO PREVALENTE: Relazioni e funzioni Risposta corretta: D Risposte corrette:53,4 COMMENTO Il quesito richiede conoscenze e linguaggio specifici. Non è usuale la richiesta di individuare la scala utilizzata; in genere si propongono situazioni in cui è richiesto, data la scala, di calcolare le misure reali di un oggetto raffigurato o le misure della rappresentazione, dato l'oggetto
102
- Acquisire progressivamente forme tipiche del pensiero matematico (congetturare,argomentare, verificare, definire, generalizzare, ...); Classe seconda primaria Risposta corretta: B Risposte Corrette 61,5 % AMBITO PREVALENTE: Numeri COMMENTO L’alunno deve individuare la regola che determina una sequenza di numeri, mettendo ogni numero della sequenza in relazione con il successivo.
103
- Acquisire progressivamente forme tipiche del pensiero matematico (congetturare,argomentare, verificare, definire, generalizzare, ...); Classe terza secondaria di primo grado Risposta corretta: D Risposte corrette 57,1% AMBITO PREVALENTE: Relazioni e funzioni COMMENTO:Lo studente deve scegliere una argomentazione corretta fra quattro date. Si tratta di interpretare una scrittura algebrica e di richiamare i concetti di pari/dispari e di successivose a è dispari, a+1, che è il successivo di a deve essere pari, pertanto il triplo di un pari è sempre pari. E’ in gioco l’interpretazione del significato di scritture algebriche. Risposta corretta: D
104
- Utilizzare la matematica appresa per il trattamento quantitativodell'informazione in ambito scientifico, tecnologico, economico e sociale (descrivere unfenomeno in termini quantitativi, interpretare una descrizione di un fenomeno in terminiquantitativi con strumenti statistici o funzioni, utilizzare modelli matematici per descrivere interpretare situazioni e fenomeni, ...). Risposta corretta: D Risposte corrette 55,2 % AMBITO PREVALENTE: Dati e previsioni Classe quinta primaria COMMENTO Il quesito richiede conoscenza delle misure di tempo e correttezza nel calcolo. Lo studente deve operare con misure di tempo, può fare una sottrazione oppure può impiegare altre strategie, ad esempio aggiungere ore e minuti all’orario di partenza fino a raggiungere l’orario di arrivo.
105
- Riconoscere le forme nello spazio e utilizzarle per la risoluzione di problemigeometrici o di modellizzazione (riconoscere forme in diverse rappresentazioni, individuarerelazioni tra forme, immagini o rappresentazioni visive, visualizzare oggetti tridimensionali apartire da una rappresentazione bidimensionale e, viceversa, rappresentare sul piano una figura solida, saper cogliere le proprietà degli oggetti e le loro relative posizioni, …). Classe seconda primaria AMBITO PREVALENTE: Spazio e figure Risposta corretta: A e D Risposte corrette :54,9 % COMMENTO L’alunno deve riconoscere le due parti simmetriche di una figura per poterla ricostruire correttamente
106
Classe terza secondari di secondo grado
- Riconoscere le forme nello spazio e utilizzarle per la risoluzione di problemigeometrici o di modellizzazione (riconoscere forme in diverse rappresentazioni, individuarerelazioni tra forme, immagini o rappresentazioni visive, visualizzare oggetti tridimensionali apartire da una rappresentazione bidimensionale e, viceversa, rappresentare sul piano una figura solida, saper cogliere le proprietà degli oggetti e le loro relative posizioni, …). Classe terza secondari di secondo grado AMBITO PREVALENTE: Spazio e figure Risposta corretta E12a risposte corrette: 60,8% E12b - Nella risposta deve essere esplicitato che il segmento DC è uguale al raggio. Esempi di risposte corrette: DC è un raggio CB è uguale al raggio e forma un triangolo equilatero COB e quindi DC è anche lui uguale al raggio Risposte corrette 42,0 % COMMENTO Lo studente deve “vedere” il trapezio ABCD unendo fisicamente o virtualmente gli i punti D e C.
107
Riconoscere le forme nello spazio e utilizzarle per la risoluzione di problemi geometrici o di modellizzazione Risposta corretta C 67% risposte sbagliate
108
Conoscere diverse forme di rappresentazione e passare da una all'altra (verbale, numerica, simbolica, grafica, ...) 59% corretta C
109
: Conoscere diverse forme di rappresentazione e passare da una all'altra (verbale, numerica, simbolica, grafica, ...) /0 % correyte
110
Risposta esatta: B 77,9 corrette
111
58,1 % corretta
112
A 62%
113
Contenuto : Relazioni eFunzioni
D 52%
116
Risultati grafG 82% errata corretta Non risponde D2b 10,0 85,6 4,3
D2c 12, , ,4 D2d 19, , ,1 D2e 41, , ,4 I problemi si evidenziano quando si tratta di passare al registro simbolico (item d.); le risposte corrette quasi si dimezzano: solo il 47.8% degli studenti riesce a formulare le due espressioni algebriche c = g , c = 30g e addirittura il 32.1% degli studenti non risponde
117
Lo stimolo della domanda E4 (vedere sotto) inizia con una formula, che esprime, nel registro simbolico, la relazione che lega l’indice di massa corporea al peso e all’altezza. La domanda è composta da tre item. L’item a. richiede un trattamento nel registro numerico (gli studenti devono effettuare un piccolo calcolo), ma, al tempo stesso, richiede la conversione dal registro simbolico a quello numerico; infatti, senza la sostituzione dei valori numerici che rappresentano le misure di peso e altezza alle variabili della formula, l’item non può essere risolto. L’item b. richiede la lettura un grafico, e, in particolare, di passare dal registro numerico a quello grafico, individuando sul grafico il punto (altezza di Carlo; peso di Carlo) e riconoscendo in quale zona si situa. L’item c. richiede procedimenti analoghi a quelli dell’item b.
118
Lavorare in un registro di rappresentazione e passare da un registro a un altro sono competenze di enorme importanza in matematica: come è noto, nessuno può lavorare direttamente sugli oggetti matematici, perché si tratta di oggetti non concreti, che non hanno odore, sapore, colore; si lavora inevitabilmente con rappresentazioni diverse ciascuna delle quali mette in luce alcune caratteristiche diverse dell’oggetto matematico figure in movimento,numeri, lettere ,simboli chimici , formule fisiche?
119
58,1 % corretta
120
A 62%
121
Contenuto : Relazioni eFunzioni
D 52%
124
Risultati grafG 82% errata corretta Non risponde D2b 10,0 85,6 4,3
D2c 12, , ,4 D2d 19, , ,1 D2e 41, , ,4 I problemi si evidenziano quando si tratta di passare al registro simbolico (item d.); le risposte corrette quasi si dimezzano: solo il 47.8% degli studenti riesce a formulare le due espressioni algebriche c = g , c = 30g e addirittura il 32.1% degli studenti non risponde
125
Un processo critico:argomentazione
Le considerazioni precedenti suggeriscono come il processo “Argomentazione” risulti di particolare difficoltà per i nostri studenti anche perché piuttosto delicato dal punto di vista didattico. Progettare e realizzare ambienti di insegnamento – apprendimento mirati a sviluppare competenze argomentative non è semplice; al tempo stesso è fondamentale, vista l’importanza centrale che tali competenze rivestono nella formazione matematica e, più in generale, intellettuale di una persona
126
PERCHE’ chi argomenta deve possedere conoscenze solide sull’oggetto dell’argomentare: le conoscenze sull’argomento, ben interiorizzate, sono una premessa necessaria all’attivazione di processi argomentativi pertinenti ed efficaci; - argomentare richiede la capacità di saper gestire, dal punto di vista logico e linguistico, i vari passi del ragionamento e la loro concatenazione ; deve possedere la capacità di attivare, a seconda dell’esigenza e del tipo di argomentazione capacità induttive,deduttive, ma anche analogie, particolarizzazioni, generalizzazioni Spesso gli studenti incontrano difficoltà proprio a utilizzare le conoscenze possedute su un certo argomento, perché non hanno ben compreso o fatto proprio il fine che devono conseguire
127
Un capovolgimento di prospettiva:
Passare da: il mio percorso di insegnamento piegato al fine del miglioramento nelle prove Invalsi Cosa devo fare per preparare le Prove Invalsi a: le prove Invalsi utilizzate per il miglioramento del mio percorso di insegnamento Come posso usare le Prove Invalsi 127 127
128
USARE I RISULTATI DELLE PROVE INVALSI
I metodi e i risultati delle valutazioni esterne possono essere utilizzati Per acquisire consapevolezza delle caratteristiche del nostro insegnamento Per intervenire sui processi di apprendimento dei nostri allievi Per il raggiungimento dei nostri obiettivi formativi
129
L'obiettività della valutazione interna è una chimera
CON I RISULTATI PROVE INVALSI MENO SOGGETTIVITA' NELLA VALUTAZIONE L'obiettività della valutazione interna è una chimera Quando un insegnante prepara una prova per i propri allievi, inevitabilmente si pone all'interno di un preciso contratto didattico Sulla terminologia, sulla costruzione delle frasi, sui simboli, sull'uso delle rappresentazioni si costituisce a poco a poco un lessico familiare d'aula in base al quale i ragazzi interpretano le domande Ogni insegnante impara a leggere (e talvolta decodificare) gli elaborati degli allievi alla luce sia delle caratteristiche personali di ognuno, sia delle precedenti prestazioni
130
L'obiettività della valutazione interna è una chimera
Un test standardizzato realizzato da un organo nazionale (o anche internazionale) può essere lo strumento adatto per abbattere certi pregiudizi e valutare abilità e conoscenze epurandole (almeno in parte) dai comportamenti che questi dettavano L'uso di strumenti di valutazione non preparati dall'insegnante ha il vantaggio di svincolare l'alunno da quelle clausole del contratto didattico che riguardano la verifica (che siano più o meno esplicite) Non è raro che gli studenti desumano le modalità con cui affrontare la valutazione fatta dal loro insegnante in base al modo in cui questa viene esposta o ancora che ritengano che il proprio docente voglia che determinati compiti siano svolti in un certo modo
131
Coltivare una cultura della valutazione che risulti organica e coerente tra i diversi livelli scolastici può aiutare anche nel superamento di alcuni ostacoli che molti studenti incontrano nel passaggio dalla scuola primaria alla scuola secondaria di primo grado e così via Queste prove esterne sono uno strumento in più in mano all’insegnante per arrivare ad una valutazione complessiva dell’allievo . Ci sono molti aspetti dell’apprendimento che possono essere valutati (e in qualche modo misurati) attraverso prove esterne
132
Potenzialità prove Invalsi
I test standardizzati sono impersonali e possono essere usati per l’autovalutazione. Esplicitare agli studenti i nuclei e/o i processi a cui determinati quesiti fanno riferimento permette loro di comprendere quali siano i loro punti deboli e i loro punti di forza, di diventare consapevole della loro preparazione, ma soprattutto del lavoro da farsi (processi di natura metacognitiva). 132
133
Potenzialità prove Invalsi
L'insegnante può aiutare ad esplorare uno o più nuclei fra quelli trattati da INVALSI e cogliere l'occasione per ricomporre conoscenze pregresse e magari aprire la strada per nuove. 133
134
Quali possono essere le cause dei risultati delle PN?
Pratiche didattiche inefficaci? Troppelezioni frontali e poche LIM? Argomenti di studio poco motivanti? Difficoltà a costruire percorsi personalizzati Famiglie troppo affettive e poco presenti nella vita scolastica
135
Cosa dobbiamo fare? Utilizzare i risultati delle prove per
migliorare la didattica Forse lo vogliono anche alunni per avere piu motivazione e agganci alla realta
136
Proposta di lavoro per i dipartimenti
Utilizzare i risultati delle prove per migliorare la didattica Analisi delle risposte degli studenti alle prove Invalsi Strumenti per la costruzione di una prova
137
PROPOSTA DI LAVORO MATERIALI Recuperare i fascicoli del 2015 di Matematica della propria classe Stampare una copia della Guida alla lettura ( Da scaricare i dati della propria classe relativamente alla percentuale di risposte corrette per ciascuna domanda, sia la tabella sia il grafico: Dettaglio risposte per item – Matematica (valori percentuali) Confronto fra risultato di classe e risultato nazionale (item per item) OBIETTIVI Analizzare le prove alla luce dei risultati dei vostri alunni e individuare Ambiti o Dimensioni sui quali i singoli docenti o i dipartimenti possono lavorare. Proposte di UdA per migliorare sui punti deboli individuati.
138
gestinv: uno strumento per la didattica
138 138
139
FINE GRAZIE DELLA PAZIENZA!!!!!!!!!
SPERO DI NON AVERVI RIDOTTI COSI!!!!!! PATRICIA
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.