La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Stato dell'esperimento LUNA giugno 2014 Alessandra Guglielmetti Università degli Studi di Milano e INFN, Milano, ITALY Laboratory Underground Nuclear Astrophysics.

Presentazioni simili


Presentazione sul tema: "Stato dell'esperimento LUNA giugno 2014 Alessandra Guglielmetti Università degli Studi di Milano e INFN, Milano, ITALY Laboratory Underground Nuclear Astrophysics."— Transcript della presentazione:

1 Stato dell'esperimento LUNA giugno 2014 Alessandra Guglielmetti Università degli Studi di Milano e INFN, Milano, ITALY Laboratory Underground Nuclear Astrophysics  Stato delle misure in corso 17 O(p,  ) 14 N (coordinatrice Alba Formicola) e 22 Ne(p,  ) 23 Na (coordinatore Daniel Bemmerer)  Pubblicazioni  Nuovo programma sperimentale LUNA 400 kV (2015-2018)  Collaborazioni in via di definizione  Progetto premiale LUNA MV

2 On going measurements (1) 22 Ne(p,  ) 23 Na : NeNa cycle of H burning. Active in astrophysical novae Impact on the abundances of 22 Ne (factor 100) 23 Na (factor 7) 24 Mg (factor 70)

3 Experimental setup and results In red newly discovered resonances Preliminary! HPGe phase to be concluded by June 2014

4 22 Ne(p,  ) 23 Na reaction 440 keV 440 keV -> 0 1636 keV 2076 keV -> 440 keV 2076 keV 2076 keV -> 0 6896 keV R -> 2076 keV In beam spectrum for the 176 keV resonance

5 On going measurements (2) 17 O(p,  ) 14 N: CNO cycle of Hydrogen burning. Q=1.2 MeV A. Di Leva et al., PRC 2014 AGB stars ( T=0.03-0.1 GK ) Rare isotopes production Never measured

6 Experimental setup and results 8 silicon detectors Beam entrance solid Ta 2 O 5 target (not visible) 17 O enriched 193 keV resonance of 17 O(p,  ) 14 N and 151 keV resonance of 18 O(p,  ) 15 N used to: -perform an accurate energy calibration of the Si detectors -measure the thickness of the Al-Mylar foils in front of the detectors with enough accuracy The ROI for the alpha particles emitted in the 70 keV resonance determined

7 Energy (keV) Counts/h 17 O(p,  ) 14 N reaction Study of the 70 keV resonance: 36 Coulomb on resonance 3 days off resonance 5 days natural background Preliminary! An evidence of the 70 keV resonance is present

8 17 O(p,  ) 14 N reaction Off-resonance and Bkg in agreement: No beam induced background On resonance evidence of 7 sigmas Data acquisition concluded. Analysis still ongoing Preliminary!

9 Publications - A. Di Leva et al., Phys. Rev. C 89 (2014) 015803 -M. Anders et al., “First direct measurement of the 2 H( ,  ) 6 Li cross section at Big Bang energies and the impact on the primordial Lithium problem” accepted for publication in Phys. Rev. Lett. -A. Guglielmetti, EPJ web of conference 66 (2014), 07007 -C. Gustavino, EPJ web of conference 66 (2014), 07009 -F. Cavanna, EPJ web of conference 66 (2014), 07004 -A. Formicola et al., Nucl. Instr. and Meth. A 742 (2014), 258 - A. Guglielmetti, Physics of the Dark Universe 4 (2014), 10

10 reactionQ-value (MeV) 17 O(p,  ) 18 F 17 O(p,  ) 14 N 5.6 1.2 18 O(p,  ) 19 F 18 O(p,  ) 15 N 8.0 4.0 23 Na(p,  ) 24 Mg11.7 22 Ne(p,  ) 23 Na8.8 D( ,  ) 6 Li1.47 On the way LUNA 400 kV present program The whole program will be completed by late autumn 2015 completed Measured & published June - Sept 2014 From Jan 2015 From Oct 2014

11 LUNA Program (1) 22 Ne(p,  ) 23 Na BGO phase (gas target beam line): Goal: upper limits for undetected resonances pushed to even lower levels. Attempt to measure the direct-capture part of the cross section. 4  apparatus (efficiency of about 70% but energy resolution lower with respect to HPGe) Mounting of the experimental apparatus starting in Oct 2014 (1 month) Data taking from Nov 2014 to March 2015: 3 months PhD student Federico Ferraro (Genova)

12 LUNA Program (2) 18 O(p,  ) 15 N (WG coordinator M. Aliotta) Solid target beam line: Same experimental apparatus used for 17 O(p,  ) 14 N Measurement should be easier due to higher Q values (higher energy of alphas to be detected). Study of 95 keV resonance and non resonant component (100-150 keV) plus eventually higher energy resonances and non resonant component Data taking: July + September 2014 PhD student Carlo Bruno (Edinburgh)

13 LUNA Program (3) 18 O(p,  ) 19 F and 23 Na(p,  ) 24 Mg (WG coordinators G. Imbriani- A. Best) solid target beam line: BGO detector for both reactions + HPGe detector for 23 Na(p,  ) 24 Mg Data taking: starting in autumn 2014. Total time for both reactions about 1 year For the 23 Na(p,  ) 24 Mg project: collaboration with Notre Dame (US) and with 3-4 people from ERNA collaboration (in Caserta study of 23 Na(p,  ) 20 Ne reaction) PhD student Axel Boeltzig GSSI/LNGS + PhD student from Napoli Carlo Savarese (?) From late 2015 start of the new program

14 LUNA 400 kV new program 2015-2018: a bridge toward LUNA MV Experimental program: 13 C( ,n) 16 O – neutron source (LUNA MV) 12 C(p,  ) 13 N and 13 C(p,  ) 14 N – relative abundance of 12 C- 13 C in the deepest layers of H-rich envelopes of any star 2 H(p,  ) 3 He – 2 H production in BBN 22 Ne( ,  ) 26 Mg – competes with 22 Ne( ,n) 25 Mg neutron source (LUNA MV) 6 Li(p,  ) 7 Be – improves the knowledge of 3 He( ,  ) 7 Be key reaction of p-p chain (LUNA MV)

15 13 C( ,n) 16 O reaction – M. Junker In AGB stars the 13 C( ,n) 16 O reaction generates the neutrons which fuel the s-process producing about half of the stable isotopes beyond iron in the universe. The interesting temperatures are 90 -100 MK, which roughly correspond to Gamow energies between 180 and 200 keV. At present the cross section within the Gamow peak is uncertain by almost one order of magnitude. LUNA-400, using a high efficiency neutron detector, will allow to measure the cross section close to Gamow energies with a precision at the level of 10%. When LUNA-MV will be available these data will be complemented by measurements at higher energies to obtain a data set covering an energy window from 230 keV to 2 MeV. LUNA-400 and LUNA-MV will thus provide a unique data set over a wide energy range, which will allow to establish a robust extrapolation over the full Gamow peak. The result will be a break through for the understanding of the s-process and for nucleosynthesis beyond iron.

16 13 C( ,n) 16 O reaction – M. Junker Development of Carbon solid state target which can withstand high intensity beam Neutron detector (Notre Dame 3 He tubes, Edinburgh has applied for funds to develop a new detector, …) Permission to run alpha beam on Carbon target (expected time 15 months) Total time: 9 months + 6 months preparation Need to dismount present gas target beamline

17 12 C(p,  ) 13 N and 13 C(p,  ) 14 N reactions - G. Imbriani The 12 C(p,  ) 13 N and 13 C(p,  ) 14 N reactions determine the relative abundance of 12 C and 13 C in the deepest layers of the H-rich envelope of any stars. Both reactions have been studied in the sixties and seventies of last centuries down to about Ep = 100 keV. To better determine the relative abundance it is crucial to reduce the uncertainties below 10% for both processes. The Gamow peak is between 20 and 70 keV and we can approach and/or partially cover it. Target production – collaboration with Organic Chemistry Dep Napoli- Permission to run on C target (see previous slide) HPGe detector with heavy shielding for both reaction: 4 +4 months. Second (solid target) beam line. No additional space BGO detector only for 13 C(p,  ) 14 N : 6 months

18 2 H(p,  ) 3 He reaction – C. Gustavino The abundance of light isotopes depends on the competition between the relevant nuclear processes and the expansion rate of the early universe. Therefore, their abundance depends on the Universal baryon density. The study of cosmic microwave background (CMB) radiation provides an accurate measurement of the Universal baryon density in excellent agreement with that obtained from BBN theory (obtained by comparing measured and computed abundance of deuterium). However, the systematic uncertainty of the latter is much higher and dominated by the uncertainties of the 2 H(p,  ) 3 He astrophysical S-factor. Other cosmological parameters are affected in the same way

19 2 H(p,  ) 3 He reaction – C. Gustavino Precision study (3%) in the 20 keV< E cm < 263 KeV energy range, well inside the BBN energy region of interest, with the goal of improving the present 9% systematic uncertainty. As light nuclei are involved in this process, the 2 H(p,  ) 3 He reaction is of high interest also in theoretical nuclear physics, in particular for what concern “ab-initio" modelling Windowless gas target HPGe detector (angular distribution) BGO detector Total time: 2 + 4 months

20 22 Ne( ,  ) 26 Mg reaction – D. Bemmerer During the life of any star, the H burning moves from the core (main sequence phase) to a more external shell. So doing, it leaves into the core a certain amount of 14 N, as released by the CNO cycle. When the He burning starts, this nitrogen is fully converted into 22 Ne through the following chain: 14 N( ,  ) 18 F(  + ) 18 O( ,  ) 22 Ne. Then, if the temperature is large enough (T> 300 MK), two competing reactions are activated, namely the 22 Ne( , n) 25 Mg and the 22 Ne( ,  ) 26 Mg. The first is an efficient source of neutrons in the He burning core, as well as in the C burning shell, of massive stars (M> 10 Msun) and in the more massive AGB stars (4 <M/Msun< 6). The second competes with the first and allows the production of a certain amount of 26 Mg. In particular, a recent study shows that in massive AGB the nucleosynthesis of all the isotopes between 26 Mg and 31 P is affected by the uncertainty of the 22 Ne( ,  ) 26 Mg reaction rate. The 22 Ne( , n) 25 Mg reaction will be studied with LUNA MV.

21 22 Ne( ,  ) 26 Mg reaction – D. Bemmerer LUNA windowless gas target filled with recirculating enriched 22 Ne gas 4  BGO summing detector Measure the E = 395 keV resonance to address conflicting indirect values of the reaction strength by providing a direct value. Even an upper limit would significantly improve the data base for the neutron source term for the astrophysical s-process. Total time 2-3 months

22 6 Li(p,  ) 7 Be reaction – A. Caciolli The most recent measurement of the cross section discovered a resonance-like structure around 195 keV with a surprising decrease of the S factor in the gamma channel with decreasing energy. Nuclear physics models predict the opposite energy dependence. This behavior could be explained by supposing the existence of a positive parity excited state in 7 Be (E = 5800 keV). This proposed state might also shade light onto the origin of the absolute amplitude of the 3 He( ,  ) 7 Be cross section. The LUNA measurements on the (p,  ) channel could cover in full the energy range of the resonance and of the S factor drop clarifying the properties of this resonance and improving also the R-Matrix calculations both in the gamma and alpha channels.

23 6 Li(p,  ) 7 Be reaction – A. Caciolli 6 Li evaporated solid targets HPGe detector for the 6 Li(p,  ) 7 Be reaction Si detector for the 6 Li(p,  ) 3 He reaction for normalisation and to monitor the target stability Activation measurement using STELLA facility Total time 6 months + 2 months preparation

24 Tentative time schedule 2015 (after October): 2 H(p,  ) 3 He (1 st beam line 3 months) 2016: 2 H(p,  ) 3 He (1 st beam line 3 months) + 22 Ne( ,  ) 26 Mg (1 st beam line 3 months) + 6 Li(p,  ) 7 Be (2 nd beam line 6 months) 2017: 13 C( ,n) 16 O (1 st beam line 9 months) + 12 C(p,  ) 13 N (2 nd beam line 2 months) 2018: 12 C(p,  ) 13 N (2 nd beam line 2 months) + 13 C(p,  ) 14 N (2 nd beam line 10 months)

25 GruppoMissioni (keuro) Altro (keuro) Totale (keuro) Padova205070 Torino101525 Genova255075 Napoli305080 Roma163046 LNGS32.567.5100 Milano201030 Missioni: 153.5 Altro: 272.5 Totale: 426 Richieste finanziare 2015 - stima AnnoRichiestaAssegnazione 2014456287.5 2013365247 2012386.5268.5 2011391237.5

26 Possibile ingresso di un gruppo INFN Bari Vincenzo Paticchio 40% I Ric INFN Enrica Fiore 40% Ric UNI Roberto Perrino 20-30% Ric INFN membri GrIII con attività nei lab LNL, LNS (ioni pesanti a bassa energia con rivelazione di particelle cariche e neutre), LNF (fisica ipernucleare a Dafne), Jlab (sonde elettromagnetiche), Triumf e LBNL (rivelatori di neutroni), Cern (ALICE e ATLAS) Antonio Valentini 30% Prof Ass. Luigi Schiavulli 30% Prof Ass. fanno parte di esperimenti in GRV Valentini si interessa di sviluppi di rivelatori e tecniche di deposizione, Schiavulli si occupa di misure di alfa e gamma applicate ai beni culturali che necessitano di basso fondo ambientale.

27 Possibile collaborazione con NTOF Attività di ricerca su rivelatori di neutroni di interesse sia per LUNA/LUNA MV (misure di sezioni d’urto che prevedono emissione di neutroni) sia per NTOF (misure di interesse astrofisico e applicativo). Sviluppo di nuove tecnologie « 3 He free» di interesse anche per il campo delle tecnologie nucleari (progetto INFN-E) Attività da svolgere dai due esperimenti di CSN3 e dal gruppo INFN-E dei LNS nell’ambito delle rispettive sigle, senza “scambi” di FTE Due fasi: 1) Caratterizzazione dei flussi di neutroni veloci nelle sale sperimentali LUNA e LUNA MV dei Laboratori Nazionali del Gran Sasso con rivelatori a scintillatore liquido di INFN Bari (vedere slide precedente) già dal 2014/15 2) R&D di un rivelatore a termalizzazione “ 3 He-free” per la misura di neutroni in un vasto range energetico, in reazioni di interesse astrofisico in tempi di 2-3 anni con possibili fondi europei / collaborazione industria

28 LUNA-MV Project B node hypothesis : definitely ruled out in September 2013

29 29 LUNA site LUNA 1 (1992-2001) 50 kV LUNA 2 (2000 – …) LUNA MV (approved) U terminal = 350 – 3500kV I max = 500  A (on target)  E = 0.7keV Allowed beams: H +, 4 He U terminal = 50 – 400kV I max = 500  A (on target)  E = 0.07keV Allowed beams: H +, 4 He, ( 3 He) South side of Hall C: definitely assessed in early 2014

30 LUNA-MV Project

31 Progetto LUNA-MV Progetto Premiale 2011: 2.8 Meuro Progetto Premiale 2012: 2.5 Meuro Divisione tecnica LNGS sta lavorando sul progettazione tecnica dell’infrastruttura (preparazione sito, schermatura, impianti, …) Valutazione di diverse soluzioni di schermatura relativamente alla riduzione del flusso di neutroni ed alla fattibilità tecnica

32 OPERATIVE TASKS: WHICH WALL? A.120 cm concrete B.40 cm concrete + 40 cm water + 40 cm concrete C.20 cm concrete + 80 cm water + 20 cm concrete We simulate three possible wall schemes with a total width of 1.20 meters (250 Mevents)

33 OPERATIVE TASK: HOW TO IMPLEMENT SERVICE ACCESSES? We simulate six possible ventilation schemes, the best is presented here. (500 Mevents) well below

34 Progetto LUNA-MV- tempi 23/04/2014 richiesta l’assegnazione di 3.5 Meuro (premiale 2011 e anticipo su premiale 2012) per acceleratore e impianti collegati su sigla LUNA MV sede LNGS. Ok Direttore LNGS 15/05/2014 presentazione M. Junker al MAC : ok dei referees Rifuggiato e Bisoffi. Verbale trasmesso alla Giunta 13/06/2014 Da avvio gara per acceleratore ad acceleratore LUNA MV funzionante in sala C: 39 mesi Preparazione sito: 12 mesi Ottenimento nulla osta Prefettura: 12-18 mesi Previsione smontaggio OPERA: area libera a dicembre 2016 Da luglio 2014: S. Gazzana ingegnere nucleare con esperienza nel coordinamento cantieri e sicurezza (GLIMOS) per seguire anche lo smontaggio di OPERA

35 Matthias Junker, LNGSCommissione MAC, 15/05/2014 Man power Supporto Divisione Tecnica LNGS Ing. G. Bucciarelli: impianti tecnologici ed impiantistica N. Massimiani: impianti elettrici G. Panella : impianti speciali: comando e controllo Ing P. Martella: impianti edili F. Caracciolo, Ing. R. Adinoldfi: gestione ambientale Ing. D. Franciotti: Resp. Divisione Tecnica LNGS Ing R. Tartaglia, Ing M. Tobia: servizio protezione e prevenzione LUNA-MV Management Structure PI: Alessandra Guglielmetti (MI) Technical Coordinator: Matthias Junker (LNGS) Physics Coordinator: Paolo Prati (GE) Glimos: Matthias Junker RAE: Matthias Junker LUNA-MV Technical Task Forces: Site Preparation: Junker (LNGS) Technical Infrastructure: Formicola (LNGS) Accelerator: Junker (LNGS) Neutron Shielding: Trezzi (MI) Gas Target: Corvisiero (GE) Solid Target: Imbriani (NA) Data Acquisition, Networking and Data Handling: NN Gamma Detectors: Menegazzo (PD) Neutron Detectors: NN

36 THE LUNA COLLABORATION Laboratori Nazionali del Gran Sasso A. Best, A. Boeltzig, A. Formicola, S. Gazzana, M. Junker, L. Leonzi Helmoltz-Zentrum Dresden-Rossendorf, Germany D. Bemmerer, M. Takacs, T. Szucs Università di Padova and INFN, Padova, Italy C. Broggini, A. Caciolli, R. De Palo, R. Menegazzo INFN, Roma 1, Italy C. Gustavino Institute of Nuclear Research (MTA-ATOMKI), Debrecen, Hungary Z. Elekes, Zs. Fülöp, Gy. Gyurky, E. Somorjai Osservatorio Astronomico di Collurania, Teramo, and INFN, Napoli, Italy O. Straniero Ruhr-Universität Bochum, Bochum, Germany F. Strieder Università di Genova and INFN, Genova, Italy F. Cavanna, P. Corvisiero, F. Ferraro, P. Prati Università di Milano and INFN, Milano, Italy A. Guglielmetti, D. Trezzi Università di Napoli ''Federico II'', and INFN, Napoli, Italy A. Di Leva, G. Imbriani, C. Savarese (?) Università di Torino and INFN, Torino, Italy G. Gervino University of Edinburgh M. Aliotta, C. Bruno, T. Davinson, D. Scott

37

38 GruppoMissioni (keuro) Altro (keuro) Padova3.5 (3 NC Genova12 (2 NC)14 gas Ne arricchito Napoli8 (1.5 NC)20 lavorazione Pb per schermo BGO e HPGe Roma7.5 (1 NC) LNGS5 (1.5 SJ) Milano0.5 (0.5 NC) Richieste straordinarie giugno 2014 Totale Missioni 36.5

39 Matthias Junker, LNGSCommissione MAC, 15/05/201439 LUNA MV


Scaricare ppt "Stato dell'esperimento LUNA giugno 2014 Alessandra Guglielmetti Università degli Studi di Milano e INFN, Milano, ITALY Laboratory Underground Nuclear Astrophysics."

Presentazioni simili


Annunci Google