La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Procedura di Inferenza/deduzione Metodo automatico per derivare nuove frasi (formule) a partire da quelle già presenti nella base di conoscenza (KB) Corretta.

Presentazioni simili


Presentazione sul tema: "Procedura di Inferenza/deduzione Metodo automatico per derivare nuove frasi (formule) a partire da quelle già presenti nella base di conoscenza (KB) Corretta."— Transcript della presentazione:

1 Procedura di Inferenza/deduzione Metodo automatico per derivare nuove frasi (formule) a partire da quelle già presenti nella base di conoscenza (KB) Corretta (sound) se per ogni formula derivata da KB usando la procedura di inferenza si ha che e una conseguenza logica di KB. Completa se vale anche il viceversa. Dimostrazione di : insieme di operazioni eseguite dalla procedura di inferenza (corretta) per derivare Teoria della dimostrazione (proof theory): è relativa ad un longuaggio di KR. Specifica un insieme di passi di ragionamento/inferenza che sono corretti

2 Alcuni Linguaggi di KR Un linguaggio di KR deve essere conciso, espressivo (il più possibile), non ambiguo, indipendente dal contesto, efficace (esiste una procedura di inferenza corretta ed implementabile) Linguaggio naturale: espressivo, ma ambiguo, non conciso Linguaggio di programmazione: preciso, strutturato, ma poco espressivo Logica: precisa, concisa, expressiva

3 Semantica ciò che la formula asserisce sul mondo = significato della frase Dipende da una particolare interpretazione: Una formula è vera rispetto ad una interpretazione se ciò che rappresenta è vero nel mondo. Es: il papa è in Olanda … il microfilm è nel lampadario Principio di composizionalità: il significato di una formula è una funzione del significato delle sue parti (si per la logica) Formula valida (tautologia): vera per qualsiasi interpretazione (piove o non piove) Formula soddisfacibile: esiste una interpretazione per cui la formula è vera (insoddifacibile altrimenti). Tautologica soddisfacibile

4 Modelli (logica proposizionale) Un Modello per una F.B.F è una intepretazione (associazione) dei simboli proposizionali di in valori di verità (V,F) per i quali è vero. Modello per mondo in cui è vero rispetto ad una certa interpretazione Esempio, modelli di P not Q: [F,F], [F,V], [V,F] Servono per definire il concetto (semantico) di conseguenza logica: Se linsieme di tutti i modelli di una KB di F.B.F.sono anche modelli di allora è una conseguenza logica di KB

5 Validity and satisfiability A sentence is valid if it is true in all interpretatioms, e.g., True,A A, A A, (A (A B)) B Validity is connected to inference via the Deduction Theorem: KB α if and only if (KB α) is valid A sentence is satisfiable if it is true in some interpretation e.g., A B, C A sentence is unsatisfiable if it is true in no interpretation e.g., A A Satisfiability is connected to inference via the following: KB α if and only if (KB α) is unsatisfiable

6 Dimostrazioni e Inferenza (ragionamento deduttivo) Dimostrazione (derivazione) logica di una formula sequenza di applicazioni di regole di inferenza a partire dalle F.B.F. nella KB fino a generare il teorema Procedura di inferenza: procedura per costruire dimostrazioni logiche attraverso lindividuazione di appropriate sequenze di applicazioni di regole di inferenza Dimostrazioni semantiche non usano procedure di infernza, ma modelli (dimostriamo la conseguenza logica). Complessità temporale e spaziale esponenziale

7 Altro Metodo Semantico è una conseguenza logica di una KB consistente (soddisfacibile) se e solo se KB estesa con NOT è insoddifacibile (non ha modelli). Formulo il problema come CSP Booleano (SAT). Se trovo un modello per KB, allora è soddisfacibile: non è una conseguenza logica di KB. Complessità esponenziale nel caso generale, polinomiale per 2SAT, e formule di HORN.

8 Proof methods Proof methods divide into (roughly) two kinds: –Application of inference rules Legitimate (sound) generation of new sentences from old Proof = a sequence of inference rule applications Can use inference rules as operators in a standard search algorithm Typically require transformation of sentences into a normal form –Model checking truth table enumeration (always exponential in n) improved backtracking, e.g., Davis--Putnam-Logemann-Loveland (DPLL) heuristic search in model space (sound but incomplete) e.g., min-conflicts-like hill-climbing algorithms

9 Resolution Conjunctive Normal Form (CNF) conjunction of disjunctions of literals clauses E.g., (A B) (B C D) Resolution inference rule (for CNF): l i … l k, m 1 … m n l i … l i-1 l i+1 … l k m 1 … m j-1 m j+1... m n where l i and m j are complementary literals. Resolution is sound and complete for propositional logic

10 Resolution Soundness of resolution inference rule: ( l i … l i-1 l i+1 … l k ) l i m j ( m 1 … m j-1 m j+1... m n ) ( l i … l i-1 l i+1 … l k ) ( m 1 … m j-1 m j+1... m n )

11 Conversion to CNF B 1,1 (P 1,2 P 2,1 )β 1.Eliminate, replacing α β with (α β) (β α). (B 1,1 (P 1,2 P 2,1 )) ((P 1,2 P 2,1 ) B 1,1 ) 2. Eliminate, replacing α β with α β. ( B 1,1 P 1,2 P 2,1 ) ( (P 1,2 P 2,1 ) B 1,1 ) 3. Move inwards using de Morgan's rules and double- negation: ( B 1,1 P 1,2 P 2,1 ) (( P 1,2 P 2,1 ) B 1,1 ) 4. Apply distributivity law ( over ) and flatten: ( B 1,1 P 1,2 P 2,1 ) ( P 1,2 B 1,1 ) ( P 2,1 B 1,1 )

12 Resolution algorithm Proof by contradiction, i.e., show KB α unsatisfiable

13 Resolution example KB = (B 1,1 (P 1,2 P 2,1 )) B 1,1 α = P 1,2

14 Forward and backward chaining Horn Form (restricted) KB = conjunction of Horn clauses –Horn clause = proposition symbol; or (conjunction of symbols) symbol –E.g., C (B A) (C D B) Modus Ponens (for Horn Form): complete for Horn KBs α 1, …,α n,α 1 … α n β β Can be used with forward chaining or backward chaining. These algorithms are very natural and run in linear time

15 Forward chaining Idea: fire any rule whose premises are satisfied in the KB, –add its conclusion to the KB, until query is found

16 Forward chaining algorithm Forward chaining is sound and complete for Horn KB

17 Forward chaining example

18

19

20

21

22

23

24

25 Proof of completeness FC derives every atomic sentence that is entailed by KB 1.FC reaches a fixed point where no new atomic sentences are derived 2.Consider the final state as a model m, assigning true/false to symbols 3.Every clause in the original KB is true in m (if a 1 … a k b is false in m FC has not reached fixed point) 4.Hence m is a model of KB 5.If KB q, q is true in every model of KB, including m

26 Backward chaining Idea: work backwards from the query q: to prove q by BC, check if q is known already, or prove by BC all premises of some rule concluding q Avoid loops: check if new subgoal is already on the goal stack Avoid repeated work: check if new subgoal 1.has already been proved true, or 2.has already failed

27 Backward chaining example

28

29

30

31

32

33

34

35

36

37 Forward vs. backward chaining FC is data-driven, automatic, unconscious processing, –e.g., object recognition, routine decisions May do lots of work that is irrelevant to the goal BC is goal-driven, appropriate for problem-solving, –e.g., Where are my keys? Complexity of BC can be much less than linear in size of KB

38 Efficient propositional inference Two families of efficient algorithms for propositional inference (the work at semantic level): Complete backtracking search algorithms DPLL algorithm (Davis, Putnam, Logemann, Loveland) Incomplete local search algorithms –WalkSAT algorithm

39 The DPLL algorithm Determine if an input propositional logic sentence (in CNF) is satisfiable. Improvements over truth table enumeration: 1.Early termination A clause is true if any literal is true. A sentence is false if any clause is false. 2.Pure symbol heuristic Pure symbol: always appears with the same "sign" in all clauses. e.g., In the three clauses (A B), ( B C), (C A), A and B are pure, C is impure. Make a pure symbol literal true. 3.Unit clause heuristic Unit clause: only one literal in the clause The only literal in a unit clause must be true.

40 The DPLL algorithm

41 The WalkSAT algorithm Incomplete, local search algorithm Evaluation function: The min-conflict heuristic of minimizing the number of unsatisfied clauses Balance between greediness and randomness

42 The WalkSAT algorithm

43 Hard satisfiability problems Median runtime for 100 satisfiable random 3-CNF sentences, n = 50

44 Hard satisfiability problems Consider random 3-CNF sentences. e.g., ( D B C) (B A C) ( C B E) (E D B) (B E C) m = number of clauses n = number of symbols –Hard problems seem to cluster near m/n = 4.3 (critical point)

45 Hard satisfiability problems


Scaricare ppt "Procedura di Inferenza/deduzione Metodo automatico per derivare nuove frasi (formule) a partire da quelle già presenti nella base di conoscenza (KB) Corretta."

Presentazioni simili


Annunci Google