1. La relatività dello spazio e del tempo (2)
1.7 La contrazione delle lunghezze Lunghezza di un segmento in movimento rispetto all’osservatore: si ricava dalla misura del tempo necessario affinchè passino per uno stesso punto i suoi due estremi (t’ = tempo proprio per O2). La lunghezza di un segmento in movimento risulta quindi minore della lunghezza propria del segmento, cioè della lunghezza misurata nel sistema di riferimento in cui esso è in quiete.
1.7 La contrazione delle lunghezze Anche lo spazio assoluto della meccanica classica non esiste: lo stesso oggetto ha lunghezze diverse in sistemi di riferimento in moto relativo tra loro. Esempio. Dilatazione dei tempi e contrazione delle lunghezze per le particelle subatomiche (muoni) Osservazione. Tutti i segmenti perpendicolari alla velocità dell’osservatore risultano della stessa lunghezza per gli osservatori solidali con i due sistemi
1.9 Le trasformazioni di Lorentz Lorentz le aveva ricavate come le trasformazioni sotto le quali le equazioni dell’elettromagnetismo rimangono invarianti nel passare da un sistema di riferimento a un altro in moto relativo. Dati due sistemi di riferimento inerziali S e S’, con S’ che si muove con velocità costante v rispetto a S e come asse delle ascisse quella del vettore v Queste leggi di trasformazione prevedono sia la dilatazione delle durate che la contrazione delle lunghezze.
1.9 Le trasformazioni di Lorentz Le trasformazioni di Lorentz sono una generalizzazione di quelle di Galileo: se la velocità v è molto piccola rispetto a c, le quantità v2/c2 e v/c2 possono essere trascurate. Le previsioni della relatività ristretta sono indistinguibili da quelle della meccanica classica quando le velocità in gioco sono molto più piccole di c. Meccanica classica: moto di un sasso che cade, di una petroliera in navigazione, di un pianeta intorno al Sole. Relatività ristretta: acceleratori di particelle
2.2 Lo spazio-tempo Un evento nello spazio-tempo è individuato da quattro numeri (t, x, y, z) che forniscono l’istante t in cui il fenomeno è avvenuto e le tre coordinate spaziali del punto in cui esso ha avuto luogo. Analogamente allo spazio ordinario, nello spazio-tempo esiste una quantità, detta intervallo invariante, che dipende soltanto dai due eventi e non dal particolare sistema di riferimento usato per descriverli. Si chiama spazio-tempo (o spazio di Minkowski) lo spazio quadridimensionale (t, x, y, z) nel quale l’intervallo invariante tra due eventi è (Δσ)2 ≡ (c Δt)2 – (Δx)2 - (Δy)2 - (Δz)2
2.4 La composizione delle velocità Un punto materiale, che ha velocità u rispetto a un sistema di riferimento S, quando è osservato in un sistema di riferimento S’, che si muove rispetto a S con velocità v, risulta avere velocità formula inversa Se il prodotto uv è piccolo rispetto a c2, il denominatore è praticamente uguale a 1 e si ottiene la formula di Galileo. Sono compatibili con il postulato di invarianza della velocità della luce (esempio 2 pag. 448)
2.5 L’equivalenza tra massa ed energia La massa è una forma di energia: trasformazioni di massa in energia e di energia in massa. Relazione di Einstein E = m c2 Un corpo fermo e non soggetto a forze possiede una energia di riposo E0 per il solo fatto di avere una massa (di riposo) m0 Esperimenti sulle particelle elementari: materializzazione di particelle a spese della scomparsa di energia (acceleratori di particelle) e, viceversa, annichilazione di due particelle con conseguente emissione di energia (o fenomeni nucleari)