Calcolo combinatorio elementare mediante immagini e poche formule… Nota per fattoriale ! 0! = 1 1! = 1 2! = 1*2 =2 3! = 1*2*3 =6 4! = 1*2*3*4 = 24 5! = 1*2*3*4*5 = 120
Sia n il numero di oggetti tra loro distinguibili A, B C D .. Sia K un numero intero positivo minore o uguale a n Disposizione semplice : gruppi di oggetti contenente k oggetti in modo che ogni gruppo differisca dagli altri o per qualche oggetto o per l’ordine secondo il quale vengono considerati N = 4 : A, B, C , D n ! / (n-1)! = 4! / (4-1)! = 1*2*3*4 / 1*2*3 = 24/6 = 4 Gruppi(1:1) :4 A, B, C, D Calcolo delle disposizioni in funzione di n, k Varia ordine Gruppi(2:2) :3 * 4 = 12 AB BA AB AC AD BA BC BD CA CB CD DA DB DC AB AC AD BC BD CD AB CA Variano oggetti n ! /(n-2)! = 4! / (4-2)! = 1*2*3*4 / 1*2 = 24/2 = 12 Combinazioni = n! (n-k)!k! = 4! /(4-2)!2! = 1*2*3*4 /2!*2! = 24/4 = 6
N = 4 : A, B, C , D Gruppi(3:3) : = 24 Combinazioni n! /(n-x)!x! = 4! /(4-3)!3! = 1*2*3*4 /1! *3!= 24/6 = 4 ABC ABD ACD BCD ABC ACB BAC BCA CAB CBA ABD ADB BAD BDA DAB DBA ACD ADC CAD CDA DAC DCA BCD BDC CBD CDB DBC DCB ACD ABC ABD BCD permutazioni n ! / (n-3)! = 4! / (4-3)! = 1*2*3*4 / 1 = 24 =2 4
Combinazioni = n! /(n-k)!k! = 4! / (4-4)!4! = 24 / 0!24 = 1 N = 4 : A, B, C , D Gruppi(4:4) : = 24 Combinazioni = n! /(n-k)!k! = 4! / (4-4)!4! = 24 / 0!24 = 1 ABCD permutazioni n ! / (n-4)! = 4! / (4-4)! = 1*2*3*4 / 0! = 24/1 =2 4 ACDB ADCB CADB CDAB DACB DCAB BCDA BDCA CBDA CDBA DBCA DCBA ABCD ACBD BACD BCAD CABD CBAD ABDC ADBC BADC BDAC DABC DBAC
Combinazioni: gruppi di oggetti con lo stesso numero di elementi dello stesso tipo,con la stessa frequenza, indipendentemente dalla loro disposizione AAB BAA ABA Combinazione unica Permutazioni: gruppi di oggetti con lo stesso numero di elementi con tipo e frequenza variabile: se tipo e frequenza uguali, deve essere diversa la posizione AAB BAA ABB ABC Permutazioni quattro
n=4 ; k=3 quattro lettere prese 3 a 3 A,B,C,D ABC CBA ACB BCA CAB BAC ABC Permutazioni = k! = 3! = 6 1 combinazione > 6 permutazioni AAB AAB BAA ABA BAB BBA ABB Combinazioni = n! /(n-k)!k! = 24 / 6 = 4 Numero totale permutazioni = 4 * 6 = 24 n ! / (n-k)! 4! /(4-3)! = 24
Numero oggetti n = 4 ; k = 3 :quattro oggetti scelti 3 a 3 Numero combinazioni = n ! / (n-k)!k! = 1*2*3*4 / 1!*1*2*3 = 24/6 = 4 Numero permutazione per data combinazione = k! = 3! = 1*2*3 = 6 Numero permutazioni totale = n! / (n-k)! = 1*2*3*4 / (1!) = 24 Numero permutazioni totale = numero combinazioni * k! = 4 * 1*2*3 = 24 ABCD 6 permutazioni ABC ABD ACD BCD 6 permutazioni 24 permutazioni 6 permutazioni 6 permutazioni
Permutazione semplice di n oggetti: ogni gruppo contiene tutti gli elementi :cambia solo la disposizione tra gli oggetti numero permutazioni semplici = n ! n = 3 k = n Pn = n! /(n-k)! = 1*2*3 /(0!) = 6/1 = 6 Pn = n! = 3! = 1*2*3 = 6 ABC 1,2,3 ROMA P4= 4! = 1*2*3*4 = 24 ABC CBA ACB BCA CAB BAC 123 321 132 231 312 213 ROMA AMOR RAMO OMAR RAOM MOAR ecc. Anagrammi…
Combinazioni semplici : gruppi contenenti lo stesso numero di oggetti con almeno uno diverso rispetto ad ogni altro gruppo N oggetti : A, B, C, D , k=2 AB AC AD BC BD CD n=4 ; k=2 (4 su 2)= 4(4-2+1)/2! = 4*3/2 = 6 6 combinazioni Numero di combinazioni semplici di n oggetti distinti di classe k ( n su k) = n * k / k! (n su k) = n (n-1)(n-2)(n-3)..(n-k+1 ) / k! n = 5; k = 2 (5 su 2)= 5(5-2+1) / 2! = 10 n=9 ; k=3 (9 su 3)= 9(9-1)(9-3+1) / 3! = 9*8*7/6 = 84 (7 su 5)= 7(7-1)(7-2)(7-3)(7-5+1) / 5! = 7*6*5*4*3 / 120 = 21 n=7 ; k=5
Riposo…
Composizione : stessi oggetti senza ordine preciso di uscita: sono equivalenti
permutazioni : stessi oggetti con ordine preciso di uscita: non sono equivalenti
Uscita senza precedenze, ordine.combinazione Uscita secondo precedenza, ordine:permutazione
6 cifre (1,2,3,4,5,6) :quanti numeri interi con tre cifre sono possibili ? n=6 ; k=3 P(n,k) = (n su k) = (6 su 3) = n(n-1)(n-2)(n-k+1)= 6*5*4=120 Con colori rosso, verde, bianco, giallo, quante bandiere tricolori possibili? n =4 ; k=3 P(n,k)=(n su k) = (4 su 3) = n(n-1)(n-k+1)=4*3*2= 24 In quanti modi 4 persone possono occupare 5 posti numerati ? n=5 ; k= 4 P(n,k)= (n su k) = (5 su 4) = n(n-1)(n-2)(n-k+1)= 5*4*3*2=120 Numero di anagrammi possibile con parola napoli ? n= 6 Pn = n! 6! = 1*2*3*4*5*6 = 720 In quanti modi possibile coprire 3 teste con 5 cappelli ? n=5 ; k =3 P(n,k)= (n su k) = (5 su 3) = 5(n-1)(n-k+1)=5*4*3 = 60
Con 90 numeri, quanti ambi, quanti terni sono possibili Con 90 numeri, quanti ambi, quanti terni sono possibili? n =90 ; k1= 2 ; k2 =3 P(n,k1)=(n su k1)=(90 su 2)=n(n-k1+1)/k1! =90*89/2 = 4005 P(n,k2)=(n su k2)=(90 su 3)=n(n-1)(n-k2+1)/k2! = 90*89*88/6 = 117480 Dati i numeri 1,3,4 quanti numeri ( di 3 cifre) cominciano con 3? n = 3 ; Pn = n! = 3! = 6 134, 143, 431, 413, 314, 341 In quanti modi diversi 3 persone possono occupare 3 su 4 posti ? n=4 ; k=3 P(n.k)=(n su k)= (4 su 3) = n(n-1)(n-k+1)=4*3*2=24 Con 7 giocatori disponibili, quante linee di attacco con 5 sono possibili? n=7 ;k =5 P(n,k)=(n su k)=(7 su 5)= n(n-1)(n-2)(n-3)(n-k+1)=7*6*5*4*3=2520 Quanti sono i numeri di 5 cifre diverse (esclusi 0, 3, 6 )? n = 7 ; k = 5 p(n,k)=(n su k)=(7 su 5) = n(n-1)(n-2)(n-3)(n-k+1)=7*6*5*4*3=2520
5 punti su un piano, e mai 3 allineati: quanti triangoli sono possibili? n = 5; k=2 P(n,k)=(n su k)=n(n-k+1)/k! = 5*4/2 = 10 A B ACB ADC ABD BCD AED BED CED BEA CEB CEA E C D
4 palline distinte come possono occupare i vertici di un quadrato 4 palline distinte come possono occupare i vertici di un quadrato? n = 4 ; k = 4 Pn = n! = 4! = 1*2*3*4 =24 ABCD ACBD BACD BCAD CABD CBAD ACDB ADCD CADB CDAB DACB DCAB ABCD ACBD ABDC ADBC BADC BDAC DABC DBAC BCDA BDCA CBDA CDBA DBCA DCBA BCAD BACD
Esempi con immagini per descrivere associazioni varie combinazioni, permutazioni con numero oggetti e classi variabili
Permutazione: insieme di x oggetti ordinati estratti da n oggetti combinazione: insieme di x oggetti ,non ordinati, estratti da n oggetti Numero di permutazioni Px = n ! / (n-x)! Numero di combinazioni Cx = n! /(n-x)!x! Dati n oggetti (A, B, C) determinare le possibili associazioni permutazioni e combinazioni, prendendo due oggetti per volta n=3 ; x = 2 P2 = 3 ! / (3-2)! = 1*2*3 /1 ! = 6 C2 = 3 ! / (3-2)!2! = 1*2*3 /1! 2! = 6 /1*1*2 = 6 / 2 = 3 A,B,C AC CA AB BA BC CB 6 permutazioni AB AC BC 3 combinazioni
Numero di permutazioni Px = n. / (n-x). Numero di combinazioni Cx = n Numero di permutazioni Px = n ! / (n-x)! Numero di combinazioni Cx = n! /(n-x)!x! Oggetti n = 4; presi 3 per volta x=3 P3= 4 ! / (4-3) ! =1*2*3*4 / (1 !) = 24 C3= 4 ! /(4-3)!3!=1*2*3*4 / (1 !)*1*2*3 = 24 /6 = 4 A, B, C, D ABC ACB BAC BCA CAB CBA ACD ADC CAD CDA D A C D C A ABD A D B BAD BDA DAB DBA BCD B D C CBD CDB DBC D C B BCD ABD ACD ABC 4 combinazioni 24 permutazioni
numero oggetti = n numero oggetti per combinazione = x numero di combinazioni = nCx numero permutazioni per ogni combinazione = x ! Numero totale permutazioni = nCx * x ! Oggetti n = 4; presi 3 per volta x=3 A, B, C, D ABC ACB BAC BCA CAB CBA ACD ADC CAD CDA D A C D C A ABD A D B BAD BDA DAB DBA BCD B D C CBD CDB DBC D C B ABC ACD ABD BCD 24 permutazioni 4 combinazioni n = 4 x = 3 nCx = n ! / (n-x)!x! = 1*2*3*4 / (4-3)!3! = 24 / 1! * 1*2*3 =24/6 = 4 nPx = x ! = 3 ! = 1*2*3 = 6 nP = nCx * x! = 4 * 3! = 4*(1*2*3) = 24
Contare permutazioni totali : 4 * 6 = 24 Oggetti n = 4; presi 3 per volta x=3 Disegnare diagramma ad albero Contare le combinazioni :4 Contare permutazioni per ogni combinazione : 6 Contare permutazioni totali : 4 * 6 = 24 n ! / ( n – k)! = 4 ! / (4-3)! = 1*2*3*4 / 1 = 24 A, B, C, D 4 combinazioni 24 permutazioni ABC ACB BAC BCA CAB CBA ACD ADC CAD CDA D A C D C A ABD A D B BAD BDA DAB DBA BCD B D C CBD CDB DBC D C B ABC ACD ABD BCD Numero combinazioni = n ! (n – x)!x! nCx = n ! / (n-x)!x! = 1*2*3*4 / (4-3)!3! = 24 / 1! * 1*2*3 =24/6 = 4 con n oggetti e classe x; permutazioni per combinazione = x! nPx = x ! = 3 ! = 1*2*3 = 6 numero permutazioni totali = numero combinazioni * classe nP = nCx * x! = 4 * 3! = 4*(1*2*3) = 24
Es. 5 oggetti (A,B,C,D,E) presi a 2 per volta : n=5; x =2 Numero combinazioni = n! (n-x)!x! = 5! (3!)*2! = 120 /12 = 10 AB, AC, AD, AE, BC, BD, BE, CD, CE, DE Numero permutazioni per classe = x ! = 1*2 =2 AB, AC, AD, AE, BC, BD, BE, CD, CE, DE AB,BAAC,CAAD,DAAE,EABC,CBBD,DBBE,EBCD,DCCE,ECDE,ED Numero permutazioni totale = nC * x ! = 10 *2! = 20 Nota :numero combinazioni (5 su 2) = (5 su 3) AB, AC, AD, AE, BC, BD, BE, CD, CE, DE ABC,ABD,ABE,ACD,ACE,ADE,BCD,BCE,BDE,CDE 5! /(5-2)!2! = 120 /3!*2! = 120 /12 = 10 5! /(5-3)!3! = 120 /2!*3! = 120/12 =10
Alcune formule per facilitare i calcoli numero oggetti = n numero oggetti per combinazione = x numero di combinazioni = nCx numero permutazioni per ogni combinazione = x ! Numero totale permutazioni = nCx * x ! n = 4 x = 3 nCx = n ! / (n-x)!x! = 1*2*3*4 / (4-3)!3! = 24 / 1! * 1*2*3 =24/6 = 4 nPx = x ! = 3 ! = 1*2*3 = 6 nP = nCx * x! = 4 * 3! = 4*(1*2*3) = 24 Alcune formule per facilitare i calcoli
Il codice genetico mette in relazione una sequenza formata da 3 nucleotidi (indicati dalle basi azotate A, C, G, U) con specifici amminoacidi UUA > leu AUU > ile GUU > val UUG > leu UCC > ser CCU > pro Si comprende la importanza che assume una associazione di tre basi considerata come combinazione UUA = AUU (contiene 2 U , 1 A) come permutazione UUA <> AUU UUA AUU GUU UUG UCC CCU leu leu val val ser ser combinazione UUA AUU GUU UUG UCC CCU leu ile val leu ser pro permutazione Nei ribosomi il DNA trasformato in mRNA viene tradotto in proteina associando ad ogni tripletta (permutazione) il relativo amminoacido Se ogni tripletta fosse considerata come combinazione , la proteina tradotta sarebbe diversa da quella codificata nel DNA