LA CLASSIFICAZIONE DEI COMPOSTI CHIMICI

Slides:



Advertisements
Presentazioni simili
I nutrienti Macronutrienti Micronutrienti
Advertisements

I LIPIDI.
Zuccheri (o Glucidi o Glicidi o Carboidrati)
LE PROTEINE.
LICEO SCIENTIFICO STATALE “LEONARDO da VINCI” di FIRENZE
I glucidi Idrati di carbonio o zuccheri o carboidrati
Istituto Comprensivo Montecorvino Pugliano classe 2A L’alimentazione.
Le biomolecole 1 1.
CARBOIDRATI Altri nomi: zuccheri glucidi saccaridi FUNZIONI:
STRUTTURA DUPLICAZIONE SINTESI DELLE PROTEINE
BIOCHIMICA DELLA CELLULA
Le macromolecole organiche
ASPETTI SPERIMENTALI PURIFICAZIONE: Ultracentrifugazione elettroforesi
Scuola Media Statale Balzico – Classe II C
I MATERIALI DELLA VITA A CURA DI ILENIA CUCINOTTA 2I.
La Sintesi Proteica.
Le proteine : l’importanza nell’etimo
Gli atomi: la base della materia
D N A LA MOLECOLA DELLA VITA.
LA CLASSIFICAZIONE DEI COMPOSTI CHIMICI
Lic. Scientifico “A. Meucci”
Anteprima Proteine.
Lic. Scientifico “A. Meucci”
MODULO 2 UNITÀ I GLUCIDI.
LE BIOMOLECOLE Le BIOMOLECOLE sono organiche biologicamente fondamentali, sia dal punto di vista strutturale che funzionale: -Lipidi -Carboidrati -Proteine.
I carboidrati Carboidrati o zuccheri (o glucidi) sono composti di carbonio, idrogeno e ossigeno e rappresentano una base fondamentale della nostra alimentazione.
ORGANISMO VIVENTE MATERIA ENERGIA CRESCITA RIPRODUZIONE
Lipidi Rappresentano un gruppo di diverse sostanze biologiche costituiti principalmente o esclusivamente da gruppi non polari Lipidi.
Cibo e nutrienti.
LE BIOMOLECOLE.
I PRINCIPI NUTRITIVI E LA DIETA!
Acidi nucleici e proteine
1 Composti chimici Inorganici Acqua Sali minerali Organici Idrocarburi Alcoli, aldeidi Molecole biologiche o biomolecole Glucidi Lipidi Proteine Acidi.
Principi nutritivi energetici
Le molecole della vita.
I LIPIDI.
I glucidi Schemi delle lezioni glucidi.
MODULO 2 UNITÀ I LIPIDI.
I componenti chimici delle cellule
Diversità e caratterizzazione
PROTEINE.
BIOCHIMICA “La chimica della vita.”.
I PRINCIPI NUTRITIVI I principi nutritivi sono contenuti negli alimenti e sono sostanze chimiche necessarie al nostro organismo per svolgere le funzioni.
I GLUCIDI Raffaele Leone.
AMMINOACIDI E PROTEINE
LIPIDI.
LA CLASSIFICAZIONE DEI COMPOSTI CHIMICI
LA CLASSIFICAZIONE DEI COMPOSTI CHIMICI
Dopo l’acqua le proteine sono il principale componente del nostro organismo. Esse svolgono numerosissime funzioni. Si trovano in molti dei nostri tessuti:
STRUTTURA DUPLICAZIONE SINTESI DELLE PROTEINE
Lipidi Glucidi Le Biomolecole Acidi nucleici Protidi.
I NUTRIENTI IL GRUPPO E COMPOSTO DA: ALICE GIANI, ALESSIA VERZARO, MIRKO ZARDINI, CARMINE TODISCO e GABRIELE CHIARELLI.
La Fabbrica delle Proteine
LA CLASSIFICAZIONE DEI COMPOSTI CHIMICI
7.3 I lipidi.
Pag. 93 Aspetti generali e classificazione
BIOLOGIA ORGANISMI VIVENTI VEGETALI - ANIMALI ORGANISMI PROCARIOTI
I CARBOIDRATI.
Transcript della presentazione:

LA CLASSIFICAZIONE DEI COMPOSTI CHIMICI Inorganici Acqua Sali minerali Composti chimici Organici Idrocarburi Alcoli, aldeidi Molecole biologiche o biomolecole Glicidi Lipidi Proteine Acidi nucleici Vitamine

I COMPOSTI ORGANICI Contengono atomi di carbonio Costituiscono gli organismi viventi

LE MOLECOLE BIOLOGICHE O BIOMOLECOLE Costituiscono le strutture presenti negli organismi viventi

GLICIDI o ZUCCHERI o CARBOIDRATI Caratteristiche: Sono composti chimici costituiti da carbonio, idrogeno e ossigeno. Sono molto abbondanti in natura. Hanno sapore dolce. Funzioni: Strutturale: costituiscono strutture essenziali per gli organismi viventi (funzione di sostegno, soprattutto nei vegetali  cellulosa) Energetica: forniscono energia per svolgere tutte le funzioni dell'organismo Protezione: costituiscono l’esoscheletro degli invertebrati (chitina) Organismi autotrofi (Es. piante): sintetizzano zuccheri (glucosio) a partire da componenti inorganici quali acqua e CO2 mediante il processo di fotosintesi clorofilliana. Organismi eterotrofi (Es. animali): soddisfano il fabbisogno energetico nutrendosi di alimenti che contengono zuccheri. Ecco alcuni esempi: frutta e miele -> fruttosio; glucosio barbabietola da zucchero, zucchero di canna -> saccarosio latte e latticini -> lattosio cereali (pane, pasta, riso), tuberi (patate) e legumi -> amido carne e pesce -> glicogeno

I diversi tipi di glicidi Ribosio Desossiribosio Componenti degli acidi nucleici Monosaccaridi (formati da 1 molecola di zucchero) Glucosio  principale fonte di energia Fruttosio  si trova nella frutta Galattosio 6C Disaccaridi (formati da 2 molecole di zucchero) Glucosio + fruttosio  Saccarosio (comune zucchero da cucina) Glucosio + glucosio  Maltosio (deriva da digestione dell’amido) Glucosio + galattosio  Lattosio (in latte e latticini) Polisaccaridi (formati da più di 20 molecole di glucosio) Amido  riserva energetica nei vegetali (cereali, tuberi, legumi) si accumula in amiloplasti nella cellula vegetale si trova nei semi e nelle radici Glicogeno  riserva energetica negli animali si accumula in muscoli e fegato Cellulosa  funzione di sostegno nei vegetali si trova nella parete cellulare delle cellule vegetali può essere digerita solo dagli erbivori è il composto organico più abbondante sulla Terra

Come si formano i disaccaridi? Reazione di condensazione H2O Saccarosio O Glucosio OH Fruttosio HO Reazione di condensazione H2O Maltosio O Glucosio OH Glucosio HO Reazione di condensazione H2O Lattosio O Glucosio OH Galattosio HO

I polisaccaridi di interesse biologico L’amido e il glicogeno immagazzinano zuccheri di riserva La cellulosa si trova nelle pareti delle cellule vegetali Granuli di amido in cellule di tubero di patata Granuli di glicogeno nel tessuto muscolare Fibre di cellulosa nella parete di una cellula vegetale Monomeri di glucosio Molecole di cellulosa Amido Glicogeno Cellulosa

LIPIDI Caratteristiche: sono costituiti da lunghe catene di atomi di carbonio, idrogeno e ossigeno sono comunemente chiamati grassi sono untuosi al tatto sono insolubili in acqua (idrofobi = “paura dell’acqua”) perché la loro molecola non è polare. Funzioni: riserva energetica (molecole ad alto contenuto energetico; si accumulano nel tessuto adiposo, ad esempio nel derma) protezione meccanica per alcuni organi (cuore, fegato, reni....) isolante termico (es. grasso animale) impermeabilizzante (es. cere sulle penne degli uccelli) funzione strutturale (nelle membrane cellulari  fosfolipidi) precursori di importanti molecole biologiche (ormoni, vitamine)

I trigliceridi (detti anche grassi) Sono costituiti da una molecola di glicerolo + 3 catene di acidi grassi Sono rappresentati dai comuni grassi ed olii. Rappresentano una fonte energetica superiore rispetto ai carboidrati Si accumulano nel tessuto adiposo (grasso sottocutaneo). Svolgono anche la funzione di isolante termico. Grassi di origine vegetale liquidi a temperatura ambiente (es. olio di oliva, olio di semi) Grassi di origine animale solidi a temperatura ambiente (es. burro, lardo, grasso animale) Ac. oleico Acido butirrico

I fosfolipidi Prodotti nel fegato. Costituiti da: testa idrofila (fosfato, glicerolo) code idrofobe (2 catene degli acidi grassi) Principali costituenti delle membrane plasmatiche cellulari (doppio strato lipidico) insieme alle proteine di membrana

Il colesterolo e gli steroidi Il colesterolo svolge funzioni essenziali al metabolismo: costituente delle membrane cellulari delle cellule animali precursore della vitamina D (importante per la crescita ossea e dei denti) composto di partenza per la sintesi degli acidi biliari (prodotti da fegato) Può essere sintetizzato dalle cellule (origine endogena) o introdotto con la l’alimentazione (origine esogena) costituisce gli ormoni sessuali prodotti dalle ghiandole surrenali (testosterone, aldosterone, estradiolo) ed altri ormoni steroidei (es. cortisone)

I livelli di colesterolo nel sangue vanno tenuti sotto controllo: perchè? Il colesterolo in eccesso nel fegato si accumula dando origine ai calcoli biliari Il colesterolo in eccesso nel sangue si accumula sulle pareti interne delle arterie provocando la formazione di placche che causano arteriosclerosi.

Le cere 1) Essendo insolubili in acqua, le cere svolgono un’importante funzione di rivestimento protettivo ed impermeabilizzante Le penne degli uccelli La cuticola sulle foglie 3) Le api le usano per costruire le pareti degli alveari 2) Conferiscono lucentezza ai frutti (mele, pere, ciliegie)

ACIDI NUCLEICI (DNA e RNA) Catene lineari (polimeri) costituiti da una sequenza di nucleotidi. I nucleotidi sono le unità fondamentali degli acidi nucleici e sono costituiti da: 1) zucchero a 5 atomi C (ribosio o desossiribosio) 2) gruppo fosfato 3) base azotata Le basi azotate sono 4: adenina (A) guanina (G) timina (T) uracile (U) citosina (C) purine pirimidine

Struttura del DNA Deoxyribonucleic Acid (acido deossiribonucleico). La struttura del DNA fu scoperta da Watson e Crick che ricevettero il Premio Nobel nel 1953. E’ importante per la trasmissione ereditaria dei caratteri tra genitori e figli. E’ una doppia elica formata da 2 catene polinucleotidiche, cioè composte da una successione di nucleotidi, tenute insieme da legami idrogeno. Le sequenze dei due filamenti sono complementari: ad una A su un filamento corrisponde sempre e solo una T sul filamento complementare e viceversa; ad una C su un filamento corrisponde sempre e solo una G sul filamento complementare e viceversa; le coppie di basi sono unite da legami idrogeno.

1) Replicazione o sintesi del DNA La doppia elica di DNA si “srotola” e ognuno dei due filamenti funge da stampo per la sintesi di un filamento complementare e uguale a quello separato. La DNA polimerasi “legge” la sequenza del filamento stampo e ne sintetizza uno complementare impiegando i nucleotidi con base azotata complementare (per es. se trova A sul filamento “stampo”, incorpora T nel filamento “complementare”). Alla fine si ottengono 2 molecole di DNA identiche a quella originale (parentale). E’ un processo semiconservativo: ognuna delle 2 molecole ottenute è formata da un filamento parentale ed un neosintetizzato.

2) Trascrizione e traduzione del DNA Dogma centrale della biologia molecolare: DNA RNA proteina trascrizione traduzione L’informazione genetica per la sintesi proteica è conservata nel DNA sotto forma di un codice (il codice genetico) in cui la sequenza delle basi determina la sequenza degli aminoacidi nella proteina codificata. Si parla quindi di traduzione del codice genetico.

2a) Trascrizione 2b) Traduzione Nel processo di trascrizione, la RNA polimerasi II usa uno dei 2 filamenti di DNA come stampo per la sintesi di RNA messaggero (mRNA). Nel mRNA la timina è sostituita dall’uracile. Il processo di trascrizione avviene nel nucleo. 2a) Trascrizione mRNA viene trasferito nel citoplasma nel reticolo endoplasmatico rugoso in corrispondenza di strutture specializzate dette ribosomi. La sequenza di mRNA viene decodificata o “tradotta”. Ogni tripletta di nucleotidi (codone) è riconosciuta da un tRNA che possiede una tripletta complementare (anticodone) ed un aminoacido (AA). La concatenazione di AA dà origine ad una catena polipeptidica. 2b) Traduzione

Le differenze tra DNA e RNA E’ FORMATO DA Doppio filamento Singolo filamento ZUCCHERO Desossiribosio Ribosio BASI AZOTATE A, T, C, G A, U, C, G NELLE CELLULE EUCARIOTE SI TROVA Nel nucleo Nel nucleo e nel citoplasma SVOLGE LA FUNZIONE DI DEPOSITARIO DELLA INFORMAZIONE GENETICA INTERMEDIARIO TRA DNA E COSTRUZIONE DI PROTEINE SPECIFICHE

PROTEINE Caratteristiche: sono catene (polimeri) di amminoacidi sono il più abbondante materiale biologico negli organismi animali sono essenziali per la struttura e le funzioni degli esseri viventi Le informazioni per la costruzione delle proteine sono contenute nei geni, cioè nelle sequenze di DNA Funzioni: Strutturale Es. tubulina e actina sono proteine del citoscheletro cheratina  forma i capelli collagene  componente di pelle, tendini, legamenti proteine della seta  ragnatela Contrazione Es. actina e miosina  contrazione muscolare Riserva  ovalbumina, nell’uovo, ha funzione di riserva per l’embrione Recettoriale  recepiscono i segnali inviati dalle cellule Enzimatica Es. enzimi digestivi  facilitano la digestione degli alimenti Trasporto Es. emoglobina  trasporta ossigeno ed anidride carbonica nei globuli rossi del sangue Segnale di comunicazione tra le cellule  ormoni, fattori di crescita Difesa immunitaria Es. anticorpi combattono le infezioni

DNA (GENI) PROTEINE ENZIMI REAZIONI CHIMICHE CARATTERI BIOLOGICI (COLORE OCCHI, CAPELLI, ECC.)

Gli amminoacidi e la formazione del legame peptidico Un amminoacido è un composto chimico caratterizzato da un gruppo amminico (NH2), un gruppo carbossilico (COOH) ed un gruppo R specifico per ogni aminoacido. In natura, esistono 20 amminoacidi diversi. Gli amminoacidi sono tenuti insieme mediante un legame peptidico: esso si forma tra il gruppo carbossilico di un amminoacido ed il gruppo amminico dell’amminoacido successivo accompagnato dalla perdita di una molecola di acqua (H2O).

ELEMENTI CHE CARATTERIZZANO UNA PROTEINA NUMERO DEGLI AMMINOACIDI (DA QUALCHE DECINA A MOLTE CENTINAIA); TIPO DI AMMINOACIDI (20 TIPI); FREQUENZA DEGLI AMMINOACIDI (QUANTE VOLTE UNO STESSO AMMINOACIDO SI RIPETE NELLA PROTEINA); SEQUENZA DEGLI AMMINOACIDI (SUCCESSIONE DEGLI AMMINOACIDI); L’ELEMENTO CHE DA’ SPECIFICITA’ ALLA PROTEINA E’ LA SEQUENZA DEGLI AMMINOACIDI: AD ES: ROMA, MORA, RAMO, OMAR, AMOR, ORMA

La struttura delle proteine La forma della proteina è importante per svolgere la sua funzione. Il riscaldamento provoca la perdita della forma (denaturazione) e la perdita della funzione delle proteine. Struttura primaria: sequenza di amminoacidi che forma una catena polipeptidica. Struttura secondaria: catena polipetidica si ripiega a formare struttura ad -elica o struttura a foglietti  . Struttura terziaria: catena polipeptidica può essere lineare (proteina fibrosa) o avvolgersi su se stessa assumendo una forma quasi sferica (proteina globulare) Struttura quaternaria: associazione di più catene polipeptidiche. Es. emoglobina (proteina presente nei globuli rossi, con funzione di trasporto dell’ossigeno nel sangue)

Le informazioni per la sintesi delle proteine sono contenute nel DNA trascrizione in mRNA traslocazione del mRNA nel citoplasma traduzione nei ribosomi presenti nel reticolo endoplasmatico rugoso Sintesi delle proteine

VITAMINE Le vitamine sono un insieme molto eterogeneo di sostanze chimiche. Sono assunte attraverso l’alimentazione. Sono divise in 2 gruppi: Vitamine che devono essere assunte quotidianamente (Complesso vit B; Vit C) Vitamine che possono accumularsi (nel fegato) (vit A, vit K, vit D, vit H) 1) Vitamine A: es retinolo -> svolge importante ruolo nella vista 2) Vitamine B 3) Vitamine C: es. acido ascorbico -> partecipa a numerose reazioni metaboliche ( biosintesi di collagene, di alcuni aminoacidi e ormoni), è anti ossidante, interviene in reazioni allergiche, neutralizza i radicali liberi 4) Vitamina D: regola metabolismo del calcio ed il processo di mineralizzazione ossea 5) Vitamine H: es. biotina importante nella sintesi di glucosio e acidi grassi 6) Vitamina K: importante nella coagulazione del sangue La carenza di vitamine ha sintomi specifici a seconda del tipo di vitamina e può causare diversi disturbi o malattie.

I COMPOSTI INORGANICI

L’ acqua: il migliore solvente L’acqua, nel nostro corpo e negli altri organismi, contiene disciolte altre sostanze Le molecole di acqua disperdono le molecole e gli ioni di altre sostanze polari Facilita le reazioni chimiche tiene in sospensione particelle più grandi Regola la temperatura corporea Per la sua natura polare è il solvente universale

I SALI MINERALI L’acqua, nel processo di erosione, scioglie i minerali di cui sono costituite le rocce che si trovano, ad esempio, nell’alveo dei fiumi. I sali minerali disciolti in acqua, rappresentano il residuo fisso che si trova indicato sulle etichette delle bottiglie di acqua minerali. Quando beviamo l’acqua, introduciamo nel nostro corpo anche i sali minerali. Alcuni di questi sono molto importanti per il nostro organismo: Il sodio  Il potassio  Il calcio  molto importante per la ossa e per la contrazione muscolare Il ferro  si trova in molte proteine; es nell’emoglobina serve per legare l’ossigeno Il magnesio  si trova nella clorofilla