Applicazione del naso elettronico (NE)

Slides:



Advertisements
Presentazioni simili
IL GRUPPO TAPPI SINTETICI ESPANSI I TAPPI SINTETICI ESPANSI: PRESENTE E FUTURO CONVEGNO ENOFORUM 21 APRILE 2009 Enoforum, 21 aprile 2009.
Advertisements

_________ __ ___________ _________ __ ___________
CHRONIC RHINOSINUSITIS CLASS
COFIN Presentazione Linee di Ricerca
OSSERVATORIO CONGIUNTURALE
STUDIO DI ALTERAZIONI EPIGENETICHE IN MELANOMI CUTANEI PRIMITIVI E METASTATICI. G Sartori (1), L Garagnani (2), L Schirosi (3), C De Gaetani (4), A Maiorana.
ALDEIDI e CHETONI contengono il gruppo CARBONILE
Gli acidi carbossilici
Reti Logiche A Lezione n.1.4 Introduzione alle porte logiche
Maria Laura Colombo e Alberto Corsini
1 IMPIANTI E STRUTTURE Corso di Laurea in PAAS Prof. Massimo Lazzari.
Corso di Politica ed Economia Agroalimentare – prof.Fanfani 1 ANALISI COMPARATA DEI SISTEMI AGROALIMENTARI DEI PAESI EUROPEI CARATTERISTICHE STRUTTURALI,
ECF ElectroChemical Fluorination
Tavola Rotonda Assessorato Agricoltura Osservatorio Agro-industriale Bologna, 25 maggio 2009 Sala Polivalente dellAssemblea Legislativa.
Indagine trimestrale sulla industria manifatturiera in provincia di Ravenna I trimestre 2003 Ravenna, 5 giugno 2003 Associazione degli Industriali della.
Indagine trimestrale sulla industria manifatturiera in provincia di Ravenna - Imprese con oltre 10 addetti - IV trimestre e consuntivo 2003 Ravenna, 19.
Indagine trimestrale sulla industria manifatturiera in provincia di Ravenna - Imprese con oltre 10 addetti - II trimestre e I semestre 2003 Ravenna, 15.
Indagine trimestrale sulla industria manifatturiera in provincia di Ravenna - Imprese con oltre 10 addetti - I trimestre 2004 Ravenna, 24 maggio 2004 Associazione.
Affidabilita’ e metodologie di qualifica dei sistemi elettronici
Le attività produttive e le imprese
Inquinamento atmosferico: inquinanti secondari, sorgenti di emissione
UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI AGRARIA DIPARTIMENTO DI SCIENZE ANIMALI TESI DI LAUREA TRIENNALE IN SCIENZE E TECNOLOGIE AGRARIE Determinazione.
CARATTERISTICHE NUTRIZIONALI E PROPRIETÀ NUTRACEUTICHE
Dipartimento di Elettrotecnica
incertezza di misura prove chimiche
LA RELAZIONE DI LABORATORIO
Modelli del colore 2 Daniele Marini.
Misura 4.D) La progettazione e la realizzazione di sistemi di sistemi di controllo del rispetto delle norme di autenticità, qualità e commercializzazione.
COMITATO DI SORVEGLIANZA TASSO DERRORE Piano di sviluppo rurale della Regione Piemonte (PSR) Misure strutturali Torino, 11 giugno 2013.
1 ECOSIND - INTERREG III C GAT-SPOT GAT-SPOT Gestione agroterritoriale sostenibile per gli oleanti tessili.
cliccare o premere un tasto per far scorrere il testo
1 Irene Annunzi - Dipartimento di Produzioni Animali Seminario 18 maggio 2006 LINDUSTRIA ALIMENTARE La regolamentazione volontaria a supporto della qualità
Ischia, giugno 2006Riunione Annuale GE 2006 High Performance Processors for Cartesian to Polar Coordinates Conversion in 0.25 m CMOS Dip. di Ingegneria.
MODULO 2 UNITÀ I GLUCIDI.
Profilo in antiossidanti e pigmenti di oli extra vergini di oliva imbottigliati in PET durante lo stoccaggio in differenti condizioni di illuminazione.
1 Ly-LAB Sistema di gestione dei dati analitici di laboratorio.
Determinazione spettrofotometrica del ∆K negli oli
MODULO MODULO 1 UNITÀ ELEMENTI DI CHIMICA.
Università degli studi di Padova Dipartimento di ingegneria elettrica
Confronto SPME/GCMS e DHS/GCMS nella determinazione dei composti volatili dell’olio extravergine di oliva Università degli Studi di Napoli Federico II.
Alimenti modificati,funzionali, biologici, OGM. “novel foods”
I prodotti food & beverage
i lipidi GLI oli e i grassi In questa unità didattica Tratteremo:
CHIMICA DELL’OLIO DI OLIVA
1 GLI ALCOOLI Gli alcooli sono composti di formula generale R-OH, dove R è un gruppo alchilico qualsiasi, anche sostituito, che può essere primario, secondario.
Esercitazioni di Biochimica Applicata
Alterazione dei grassi: irrancidimento ossidativo.
SAGGIO IMMUNOCHIMICO CON RIVELAZIONE ELETTROCHIMICA PER LA DETERMINAZIONE DEL p,p’-DDT IN ACQUE REFLUE. Schema della rivelazione in Flusso DDTAc-bTG (bTG:
CHIMICA APPLICATA TECNOLOGIA DEI MATERIALI
DISPOSITIVI DI ALIMENTAZIONE
Alterazione dei grassi: irrancidimento ossidativo.
Valutazione di scenari alternativi di gestione dei rifiuti urbani per un territorio provinciale Antonio Scipioni Tania Boatto
Alimenti e qualità alimentare
TECNOLOGIE ALIMENTARI PER LA CONSERVAZIONE DEGLI ALIMENTI
GRUPPI FUNZIONALI ‘’Enrico Fermi’’ 6 – aldeidi e chetoni
GRUPPI FUNZIONALI ‘’Enrico Fermi’’ 8 – Esteri e saponi
Comparazione fra età del gatto ed età dell’uomo
GLI ALCOOLI Gli alcooli sono composti di formula generale R-OH, dove R è un gruppo alchilico qualsiasi, anche sostituito, che può essere primario, secondario.
MODIFICAZIONE A CARICO DEI LIPIDI PER EFFETTO DELLA COTTURA
VETRO Si dice vetro un materiale inorganico solido ed amorfo ottenuto per progressivo irrigidimento di un liquido che non ha cristallizzato durante il.
CALORIMETRIA A SCANSIONE DIFFERENZIALE S.I.C.S.I. VIII Ciclo - II anno Indirizzo Scienze Naturali Corso di Laboratorio di Chimica Analitica Prof. Andini.
“TRIGLICERIDI E FOSFOLIPIDI”
INTRODUZIONE La contaminazione fungina nelle matrici alimentari è causa di deterioramenti che possono determinarne l’inidoneità al consumo ed alla trasformazione.
Università degli studi di Napoli “FEDERICO II” Corso di laurea in Scienze Chimiche Confronto della degradazione di difenamide con fotolisi omogenea e fotocatalisi.
ATTIVITA’ LIBERA ANALISI DEGLI ALIMENTI Dr. CHIARA E. CORDERO AA 2015/2016 PROGRAMMA DELLE ESERCITAZIONI DI LABORATORIO.
IZSTO Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta Attività e idee progettuali Politecnico di Torino Istituto Zooprofilattico.
Paolo Pistarà Principi di Chimica Moderna © Istituto Italiano Edizioni Atlas 2012 Copertina 1.
Alcalimetria.
Pag. 93 Aspetti generali e classificazione
4.1 Oli e grassi.
Transcript della presentazione:

Applicazione del naso elettronico (NE) nel controllo del processo di frittura Università degli Studi di Napoli Federico II Dipartimento di Scienza degli Alimenti Savarese M.*, Parisini C.*, De Marco E.*, Battimo I.‡, Falco S.*, Sacchi R.*‡ * CRIOL, Centro Ricerche per l’Industria Olearia, Industria Olearia Biagio Mataluni, zona industriale, 82016 Montesarchio (BN) ‡ Università degli Studi di Napoli Federico II, Dipartimento di Scienza degli Alimenti, via Università 100, 80055 Portici (NA) e-mail: criol@mataluni.com INTRODUZIONE OBIETTIVI Le proprietà fisiche, chimiche e nutrizionali di un olio possono subire significative modificazioni a causa della termossidazione. Nei grassi sottoposti a riscaldamento avvengono, infatti, numerose reazioni, che possono essere classificate in: idrolisi; ossidazione; polimerizzazione (White, 1991). Numerosi sono i metodi proposti per valutare l’entità della degradazione ossidativa subita da un olio in seguito al processo di frittura e molteplici sono i parametri proposti come indici di ossidazione. I metodi utilizzati vanno dai tradizionali, quali la valutazione del colore, la determinazione degli acidi grassi liberi, la misura del punto di fumo e della viscosità, ai metodi standard, quali la determinazione gravimetrica dei composti polari, la determinazione dei dieni coniugati mediante misura dell’assorbimento a 232 nm, la determinazione della composizione acidica, a metodi veloci, quali la determinazione della costante dielettrica (Orthoefer e Cooper, 1996). Ciascuno di tali metodi presenta lati positivi e negativi e nessuno è in grado di effettuare una valutazione esaustiva e del tutto affidabile delle alterazioni subite dall’olio, per cui un giudizio sulla stabilità ossidativa di un olio nel corso di un processo di frittura può essere formulato soltanto integrando le informazioni tratte da diverse tipologie di analisi. Una valutazione rapida e sintetica dell’entità della degradazione subita da un olio nel corso di un processo di termossidazione sarebbe, dunque, estremamente utile. Uno strumento che potrebbe essere in grado di formulare un giudizio complessivo in tal senso è il Naso Elettronico (NE), che, mediante una serie di sensori dotati di parziale specificità e un appropriato sistema di elaborazione delle risposte di tali sensori ai composti volatili, è in grado di effettuare una valutazione globale del flavour di un olio (Gardner e Barlett, 1994; Deinsingh et al., 2004). Confrontare il giudizio sulla degradazione subita da un olio nel corso di un processo di frittura formulato mediante utilizzo del NE con quello derivante dall’integrazione delle informazioni tratte da analisi convenzionali; Valutare l’opportunità di impiegare il NE nel monitoraggio dell’evoluzione subita dal mezzo di frittura. Figura 1. Naso Elettronico PEN2 (Airsense Analytics, Germany) in dotazione al Dipartimento di Scienza degli Alimenti, Università degli Studi di Napoli. MATERIALI E METODI La valutazione della degradazione dell’olio nel corso del processo di termossidazione è stata effettuata riproducendo le condizioni nelle quali comunemente viene effettuata la frittura domestica. Sono stati effettuati, per tre diverse formulazioni per frittura (miscele di oli vegetali; olio A, B, C), in una friggitrice elettrica della capacità di 1 litro, due cicli di frittura discontinua della durata di 4 ore ciascuno, intervallati da una pausa di 1 ora: ogni 30 minuti è stata effettuata una frittura di un campione di patate surgelate (100 g), per un totale di 16 fritture. Campioni di olio prelevati a diversi tempi di frittura (prima dell’inizio del processo, dopo 4 ore e dopo 8 ore di frittura) sono stati sottoposti alle seguenti analisi: determinazione dell’acidità e degli indici spettrofotometrici nell’ultravioletto (Reg. CEE 2568/91); determinazione dei Total Polar Components (TPC) secondo il metodo indicato dalla Association of Official Analytical Chemists (AOAC); determinazione della composizione acidica mediante analisi gascromatografica dei relativi esteri metilici (Reg. CE 796/02) e del metil-ottanoato (C8:0), significativo prodotto dell’ossidazione degli esteri metilici degli acidi grassi (Márquez-Ruíz e Dobarganes, 1996); valutazione spettrofotometrica del colore mediante misura dell’assorbanza alle lunghezze d’onda di 445; 495; 560; 595 e 625 nm, calcolo dei tre valori tristimolo (X; Y; Z) secondo il metodo CIE (1986) e valutazione della luminosità relativa o trasparenza (Y%); valutazione del flavour mediante NE. È stato impiegato uno strumento PEN2 (Airsense Analytics, Germany) dotato di 10 sensori MOS (metal oxide semiconductor)(Figura 1) reattivi a composti ossidanti (in particolare ad aldeidi, chetoni, alcoli, acidi grassi e loro esteri). RISULTATI Tabella 1. Evoluzione nel corso della frittura dei parametri analitici monitorati sui 3 oli. (h) 82 a b 0h 4h Come atteso, tutti gli indici monitorati (Tabella 1) hanno mostrato un aumento nel corso del processo di frittura, indicando una progressiva degradazione dell’olio. La velocità di tale degradazione appare differente tra le tre formulazioni per frittura testate. Sono stati osservati: Un aumento degli acidi grassi liberi, dovuto alle reazioni di ossidazione, idrolisi e pirolisi che provocano la rottura dei legami della struttura trigliceridica; Un aumento dei dieni e trieni coniugati (prodotti primari e secondari di ossidazione), valutato attraverso la misura degli indici spettrofotometrici; Un incremento nel contenuto di TPC, costituiti da prodotti di degradazione, derivati ossidati non volatili, composti ciclici e polimeri prodotti dalle reazioni a carico dei trigliceridi e dai composti solubili in olio derivanti dall’alimento fritto; Un aumento dell’acido grasso a corta catena C8, prodotto secondario di ossidazione originato dalla degradazione degli idroperossidi; Una riduzione del rapporto linoleico/palmitico, frequentemente impiegato come indice della degradazione ossidativa subita da un olio nel corso della termossidazione; Una riduzione di luminosità. 8h Figura 2. Loading plot (A) e score plot (B) risultanti dalla PCA (software Addinsoft XLSTAT 2006; Versione 2006.06)effettuata sui valori degli indici analitici misurati . L’Analisi delle Componenti principali (PCA)(Figura 2) condotta sui valori misurati dei parametri utilizzati come indici della degradazione dell’olio, mostra come sia possibile evidenziare una distinzione sia tra le tre miscele testate, sia tra diversi tempi di frittura. La stessa distinzione tra gli oli prelevati a differenti tempi di frittura può essere tratta dall’elaborazione delle risposte dei sensori del NE (Figura 3). La PCA condotta su tali risposte mostra come gli oli iniziali si differenzino nettamente da quelli fritti e come sia possibile discriminare tra oli sottoposti a frittura per tempi diversi (0; 4; 8 ore). CONCLUSIONI Dai dati ottenuti in questo studio preliminare il NE si è mostrato efficace nella distinzione tra oli caratterizzati da una differente entità della degradazione conseguente ad un processo di frittura, fornendo una informazione sintetica paragonabile a quella derivante dall’integrazione dei risultati di numerose determinazioni analitiche tradizionali. Appare, dunque, da valutare la possibilità di impiegare tale strumento nel monitoraggio della progressiva degradazione subita dal mezzo di frittura. Fornendo un giudizio complessivo del flavour dell’olio, frutto del complesso di composti volatili generati dalla degradazione dei trigliceridi, potrebbe risultare una valida alternativa alla misura dei tradizionali parametri di ossidazione, in grado di fornire valutazioni solo parziali. Il vantaggio consisterebbe nella possibilità di sostituire un complesso di determinazioni da sottoporre a necessaria integrazione con un’unica analisi che, non richiedendo alcun pretrattamento dei campioni, fornisce una risposta rapidissima e sintetica. RINGRAZIAMENTI Questo lavoro è stato realizzato con il contributo dell’Industria Olearia Biagio Mataluni s.r.l. e dei fondi MIUR (Progetto “Controllo Qualità ed Innovazione Tecnologica nell’industria Olearia”; DM 593 del 8/08/2000, Prot. MIUR 1866 del 18/02/2002) e del Centro di Competenza delle Produzioni Agro-Alimentari (Regione Campania). BIBLIOGRAFIA Association of Official Analytical Chemists (AOAC) Official Methods of Analysis, 982.27, 2002. Commission International de l’Éclairage, 1986. Colorimetry. CIE Publication N. 15.2, Wien. Deisingh A.K., Stone D.C., Thompson M., 2004. Applications of electronic nose and tongues in food analysis. International Journal of Food Science and Tecnology, 39: 587-604. Gardner J.W., Bartlett P.N., 1994. A brief history of electronic noses. Sensors and Actuators B, 18: 211-220. Márquez-Ruíz G., Dobarganes C., 1996. Short chain fatty acid formation during thermoxidation and frying. J. Sc. Food Agric., 70: 120-126. Orthoefer F.T., Cooper D.S., 1996. Evaluation of used frying oil. In Deep Frying, Nutrition and Pratical Applications, edited by E.G Perkins and M.D.Erickson, American Oil Chemists’ Society, Champaign, pp 283-335. Regolamento CEE n. 2568/91 del 11 luglio 1991. Gazz. Uff. Com. Europ. 5/9/91 NL 248/1 Regolamento CE n. 796/02 del 6 maggio 2002 . Uff. Com. Europ. 15/5/02 L 128/8. White P.J., 1991. Methods for measuring changes in deep-fat frying oils. Food Technology, 45: 75-79. RINGRAZIAMENTI Figura 3. PCA effettuata (software Winmuster vers. 1.6) sulle risposte dei sensori del NE ai campioni di olio di frittura e di patate dopo 8h di frittura. OLI E GRASSI ALIMENTARI: INNOVAZIONI TECNOLOGICHE E RICERCA CHIMICA. BOLOGNA, 30 GIUGNO 2006.