FUNZIONI GONIOMETRICHE CLASSE 3 A S A.S. 2013/14.

Slides:



Advertisements
Presentazioni simili
Montanari Maria Giulia
Advertisements

Progetto lauree scientifiche
L’ IPERBOLE.
AUTORE: CAGNONI VALENTINA
Sistema di riferimento sulla retta
Cap. 3 Il piano Cartesiano
IL PIANO CARTESIANO.
ASCISSA SOPRA UNA RETTA
Il linguaggio della geometria
Definizione e caratteristiche
a’ = f(a) Definizione e proprietà
1 Grandezze omogenee, commensurabili e incommensurabili
angoli orientati negativamente se la rotazione avviene in verso orario
Elementi di Matematica
LE FUNZIONI TRIGONOMETRICHE
ANGOLI.
1 La circonferenza e il cerchio 1 circonferenza
Il moto armonico Altro esempio interessante di moto è quello armonico caratterizzato dal fatto che l’accelerazione è proporzionale all’opposto della posizione:
TRIGONOMETRIA Ripasso veloce.
I.T.C.G. MOSE' BIANCHI - MONZA
Funzione tangente e cotangente
Gonìa (dal greco angolo)
NOO La Trigonometria NOO !!!
LE FUNZIONI SENO, COSENO E TANGENTE
L’Appartamento m “Distanza in miglia nautiche tra due punti aventi la stessa latitudine” Semplice spiegazione utilizzando le proprietà della trigonometria.
Sistemi di riferimento
TRIGONOMETRIA Ripasso veloce.
LA CIRCONFERENZA.
Tracciamo la tangente alla circonferenza nel punto A
× × = 1 ESEMPI DI LUOGHI GEOMETRICI Luoghi geometrici
Corso di Matematica (6 CFU) (4 CFU Lezioni +2 CFU Esercitazioni)
CIRCONFERENZA E CERCHIO
Corso di Matematica (6 CFU) (4 CFU Lezioni +2 CFU Esercitazioni)
ELEMENTI DI GONIOMETRIA E TRIGONOMETRIA
Costruzione delle funzioni goniometriche con Geogebra
LA RETTA Assi cartesiani e rette ad essi parallele
Liceo Scientifico Tecnologico “Grigoletti” Precorsi Trigonometria
CIRCONFERENZA E CERCHIO
Prof.ssa Carolina Sementa
 P O H Circonferenza goniometrica Raggio OP = 1.
Le funzioni goniometriche
Funzioni goniometriche IISS "E.Medi"Galatone a.s Prof. Giuseppe Frassanito1.
La circonferenza e l’ellisse La sezione conica è l’intersezione di un piano con un cono. La sezione cambia a seconda dell’inclinazione del piano. Se il.
L’iperbole l'iperbole1IISS "Medi" - Galatone prof. Giuseppe Frassanito.
Prendendo in considerazione il moto dei corpi estesi, per i quali varia nel tempo l’orientazione nello spazio. Possiamo parlare del moto rotatorio.
Le Funzioni goniometriche
Luogo geometrico In geometria esistono delle figure formati da punti che soddisfano a delle particolari condizioni. Queste figure costituiscono dei luoghi.
La misura della circonferenza e del cerchio
IISS "E. Medi" - Galatone Prof. Giuseppe Frassanito a.s. 2012/2013
CNOS-FAP San Donà di Piave A cura di Roberto Marcuzzo TRIGONOMETRIA PIANA La trigonometria nasce attorno ai secoli III e II a.C. e si presenta come metodo.
a’ = f(a) Definizione e proprietà
1. Le coordinate di un punto su un piano Le coordinate di un punto su un piano 2. La lunghezza e il punto medio di un segmento La lunghezza e il punto.
Per un punto non passa alcuna parallela ad una retta data
angoli orientati negativamente se la rotazione avviene in verso orario
Divisione di un angolo retto in tre angoli uguali
Luoghi di punti In geometria il termine
IL CERCHIO E LA CIRCONFERENZA.
Funzioni trigonometriche. Funzioni Trigonometriche si dice angolo positivo individuato dalla coppia di semirette r e r' uscenti dal punto O, l'insieme.
TRASFORMAZIONI GEOMETRICHE UdA n. 1 classe 2 A. Una trasformazione geometrica è una corrispondenza biunivoca definita nell’insieme dei punti del piano.
TRASFORMAZIONI GEOMETRICHE: LA ROTAZIONE
Le frazioni A partire da N vogliamo costruire un nuovo insieme numerico nel quale sia sempre possibile eseguire la divisione. Per fare ciò dobbiamo introdurre.
La goniometria si occupa della misura degli angoli e delle relative funzioni. La trigonometria studia i procedimenti di calcolo che permettono di determinare.
Come si misurano gli angoli
ELEMENTI DI GONIOMETRIA E TRIGONOMETRIA
ELEMENTI DI GONIOMETRIA E TRIGONOMETRIA
Transcript della presentazione:

FUNZIONI GONIOMETRICHE CLASSE 3 A S A.S. 2013/14

MISURA DEGLI ANGOLI IN RADIANTI L’unità di misura degli angoli usata abitualmente è il grado, definito come la trecentosessantesima parte dell’angolo giro. Questo sistema di misura, che forse è un residuo degli studi degli astronomi babilonesi che consideravano l’anno composto di 360 giorni, non è particolarmente comodo, anche perché, nell’esprimere le frazioni dell’unità, non utilizza la suddivisione decimale. Per le frazioni del grado si usa il primo ( che è 1/60 di grado ed indicato con ‘ ) e il secondo ( che è 1/60 del primo, cioè 1/3600 di grado ed indicato con “ ). Per le applicazioni scientifiche viene utilizzata un’altra unità di misura, detta radiante, la cui definizione deriva da proprietà relative al cerchio.

In ogni circonferenza si stabilisce una corrispondenza biunivoca tra gli angoli al centro e gli archi. Le lunghezze degli archi sono direttamente proporzionali alle ampiezze degli angoli al centro corrispondenti. Così, se in una circonferenza di raggio r indichiamo con α l’ampiezza in gradi di un angolo e con h la lunghezza dell’arco corrispondente, vale questa relazione :

IL RADIANTE Consideriamo un insieme di circonferenze concentriche. Esse si corrispondono nell’omotetia con centro nel centro comune e rapporto uguale al rapporto dei rispettivi raggi. Un angolo al centro individua su ognuna delle circonferenze un arco la cui lunghezza risulta proporzionale al raggio della circonferenza. Infatti 360° : α = 2πR : h = 2πR’: h’. Di conseguenza, in ogni circonferenza un angolo al centro determina il medesimo rapporto tra la lunghezza dell’arco e la lunghezza del raggio relativo : h : R = h’ : R’

Tale rapporto non dipende dalla particolare circonferenza, ma solo dall’angolo considerato. Può essere quindi utilizzato come un criterio per la misura degli angoli. Qual è, per esempio, il rapporto h : R determinato dall’angolo di 90°? L’angolo retto è la quarta parte dell’angolo giro; la lunghezza dell’arco corrispondente è quindi la quarta parte della circonferenza, cioè h = 2πR/ 4 = πR/2. Per l’angolo di 90° quindi il rapporto h / R vale π/2 e questo valore, come si è detto, non fa più riferimento al particolare raggio R della circonferenza. Se un arco ha lunghezza uguale al raggio R, il rapporto h / R è uguale a 1. Ne consegue che: Si definisce radiante l’ampiezza dell’angolo al centro corrispondente a un arco di lunghezza uguale al raggio della sua circonferenza.

L’ampiezza di un angolo espressa in radianti si calcola dividendo la lunghezza dell’arco corrispondente per il raggio. Per convertire la misura di un angolo da gradi a radianti e viceversa si utilizza la seguente proporzione ( in cui α indica la misura in gradi e x la corrispondente misura in radianti ) : x : π = α : 180

COSENO E SENO DI UN ANGOLO Si può considerare l’angolo da due diversi punti di vista : In modo statico, come “parte di piano compresa tra due semirette aventi origine in comune” : secondo questo modo di vedere, gli angoli di ampiezza superiore a 360° sono del tutto equivalenti, come insiemi di punti del piano, ad angoli di ampiezza inferiore; In modo dinamico, come “ parte di piano descritta dalla rotazione che compie una semiretta attorno alla sua origine a partire da una posizione iniziale”. In talune applicazioni questo punto di vista è essenziale ( apertura di una cassaforte mediante una ghiera ).

Noi intenderemo l’angolo nel suo senso dinamico e allora assegneremo il segno positivo al verso antiorario, quello negativo al verso orario. L’angolo sarà quello della rotazione di centro C che porta una semiterra di origine C (lato iniziale dell’angolo) a corrispondere ad una semiretta di uguale origine (lato finale dell’angolo). Introducendo nel piano un sistema di riferimento cartesiano, consideriamo un angolo in posizione normale quando il suo vertice coincide con l’origine, il lato iniziale coincide con il semiasse positivi delle ascisse e si assume come positivo il verso antiorario. Un insieme di angoli che differiscono tra loro per un multiplo di π / 2π si indica così: x + k π oppure x(mod π ) / x +2 k π oppure x(mod π ).

Fissato un sistema di riferimento cartesiano nel piano, si chiama circonferenza goniometrica una circonferenza con centro nell’origine e raggio unitario Per ogni x reale, il coseno di x ( indicato con cosx ) è l’ascissa del punto A in cui il lato finale dell’angolo di ampiezza x interseca la circonferenza goniometrica Per ogni x reale, il seno di x ( indicato con senx ) è l’ordinata del punto A in cui il lato finale dell’angolo di ampiezza x interseca la circonferenza goniometrica

Sia l’ascissa che l’ordinata del punto A variano da –1 a +1, perché A appartiene alla circonferenza goniometrica. Per ogni x reale, è definito il valore cosx e -1 ≤ cosx ≤ 1 Per ogni x reale, è definito il valore senx e -1 ≤ senx ≤ 1 Poiché la circonferenza goniometrica ha raggio unitario, la sua equazione fornisce la relazione fondamentale tra seno e coseno, che vale per ogni valore reale di x : RELAZIONE FONDAMENTALE TRA SENO E COSENO COS 2 X + SEN 2 X = 1 da cui si deduce che :

TANGENTE DI UN ANGOLO Dato un angolo di ampiezza x, in posizione normale, si chiama tangente trigonometrica dell’angolo l’ordinata del punto di intersezione del lato finale ( eventualmente prolungato ) e della retta tangente alla circonferenza goniometrica nel punto di coordinate ( 1;0). La tangente trigonometrica dell’angolo si indica con tgx o tanx.

C’è qualche relazione tra senx, cosx, e tgx? Osserviamo : Limitiamoci al primo quadrante: I triangoli OCD e OAB sono simili per il primo criterio, quindi i lati sono in proporzione: AB : CD = OA : OC Ma si ha che AB=tgx, CD=senx, OA=1 e OC=cosx Quindi si ottiene : tgx:senx=1:cosx da cui la Relazione fondamentale tra seno, coseno e tangente : tgx = senx/cosx

A questo punto possiamo provare a cercare su Internet : andiamo su e cerchiamo qualcosa sulle funzioni goniometriche. Un altro sito interessante potrebbe essere