Electronics Trigger and DAQ. Attività TDR Studio dei canali ottici di trasmissione. Sezione di Napoli. Studio del sistema di lettura dati dal FE (ROM.

Slides:



Advertisements
Presentazioni simili
Routing Crediti Parte delle slide seguenti sono adattate dalla versione originale di J.F Kurose and K.W. Ross (© All Rights Reserved)
Advertisements

La conservazione del passato attraverso il progresso tecnologico Tesi di Vittoria VulloA.A. 2010/2011 Comunicazione Innovazione Multimedialità
1 La farm di ATLAS-Napoli 1 Gb/s 7 nodi con 2 CPU PIII a 1 GH, RAM 512 MB, 2 schede di rete a 100 Mb/s. Server con 2 CPU PIII a 1 GH, RAM 1 GB, 2 schede.
Queuing or Waiting Line Models
Vincenzo Vagnoni per il gruppo di Bologna
LHCf Status Report Measurement of Photons and Neutral Pions in the Very Forward Region of LHC Oscar Adriani INFN Sezione di Firenze - Dipartimento di Fisica.
A. Di Ciaccio Riunione RPC 17 luglio 2002 Lecce Test ad X5-GIF (3-10 luglio 2002) Scopi del test (discussi tra di noi,con i referee ed al GruppoI a giugno)
1 DAQ Layout VME Readout Unit (XDAQ) TTCvi TTCex TRG BSY Builder Unit (XDAQ) Monitor (ORCA) BSY TRG CCB MiniCrate DT Chamber 1 ROB CCB MiniCrate DT Chamber.
Capitolo 20: Sistemi multimediali
Motor Sizing.
Distribuzione del numero di alleli condivisi da coppie di fratelli e di non-parenti tipizzati rispettivamente per 5, 9 e 13 markers.
Paolo Bagnaia - 10 January invecchiamento. elettronica di read-out; shielding (MDT, RPC, …); HLT + DAQ; _________________________ NB :non include.
Frequency Domain Processing
Ottimizzazione del tempo morto
Distributed System ( )7 TCP/IP four-layer model.
Giovanni Biondi ICT e trasformazione della Scuola.
VIPIX, pSuperB, (SuperB) Atlas/FTK M. Villa 04/11/2010.
CMS RPC R&D for phase 2 Two types of upgrades proposed for the CMS RPC muon system: 1.Aging and longevity: installed in 2007, must continue to operate.
16 Maggio CSN1 Computing-Software-Analysis CMS-INFN TEAM Analisi in CMS: stato e prospettive del supporto italiano.
Extreme Cluster Administration Toolkit Alberto Crescente, INFN Sez. Padova.
Sezione di Padova Contributo alla costruzione dei layers 6,7 Possibili task per PADOVA:  precedente proposta: R&D della procedura di assemblaggio degli.
4/20/20151 Metodi formali dello sviluppo software a.a.2013/2014 Prof. Anna Labella.
CMS RPC R&D for phase 2 Two types of upgrades proposed for the CMS RPC muon system: 1.Aging and longevity: installed in 2007, must continue to operate.
SOTTOSISTEMA DI MEMORIA
Attivita` di TileCal 2013 C.Roda Universita` e INFN Pisa Riunione referees ATLAS Roma 1 C.Roda Universita` e INFN Pisa.
1 M&O cat A - consuntivo provvisorio modifica del preventivo 2004 M&O cat B ancora non sono previsti. (saranno presentati al RRB di Aprile) Profili.
Taccani1 7.4 Identification ANALISI DEI PERICOLI Hazard Analysis Identificazione Valutazione Misure di Controllo Control Measures Assessment.
M. Citterio Roma 10 Gennaio 2006 Costo per l’upgrade del Calorimetro Elettromagnetico ad Argon Liquido di Atlas Mauro Citterio INFN Milano.
MODELLI ANALITICI PER LA VALUTAZIONE DELLE PRESTAZIONI DI ARCHITETTURE DI COMMUTAZIONE SPN Ing. Michele Savi DEIS - Universita’di Bologna
Accoppiamento scalare
1 SYNCHRONOUS/ REACTIVE PROGRAMMING In Sistemi Software Concorrenti.
Layered Grid Architecture. Application Fabric “Controlling elements locally”: Access to, & control of, resources Connectivity “Talking to Grid elements”:
BaBar Tier A Administration Workshop CCR, Paestum Giugno 2003 Alberto Crescente, INFN Sez. Padova.
SUMMARY Time domain and frequency domain RIEPILOGO Dominio del tempo e della frequenza RIEPILOGO Dominio del tempo e della frequenza.
Tecniche di Acquisizione dati I (DAQ) Leonello Servoli
27/5/2004 P. Morettini 1 Computing per il DAQ di ATLAS Workshop CCR, Castiadas (CA) 27 Maggio 2004 Nell’ambito della CCR (come pure della CSN1) si affronta.
MUG-TEST A. Baldini 29 gennaio 2002
SUMMARY High efficiency motors RIEPILOGO Motori ad alta efficienza RIEPILOGO Motori ad alta efficienza.
RIEPILOGO Motori lineari
GuidoTonelli/Università di Pisa ed INFN/Gruppo1/Roma Richiesta di partecipazione alle spese per il procurement attraverso il meccanismo del.
SUMMARY Transmission and distribution of the electric energy RIEPILOGO Trasmissione e distribuzione dell’energia elettrica RIEPILOGO Trasmissione e distribuzione.
Summary Module 1 – Unit 1 (Current, potential difference, resistance) RIEPILOGO Modulo 1 – Unità 1 (Corrente, tensione, resistenza)
SUMMARY Different classes and distortions RIEPILOGO Le diverse classi e le distorsioni RIEPILOGO Le diverse classi e le distorsioni.
Motori a corrente continua
Filtri del secondo ordine e diagrammi di Bode
 SLP Tests in VME test stand: Saverio – Pierluigi (Daniel)  New test stand: Enrico (Saverio – Pierluigi)  VME Tests versus new test stand tests (Enrico-Saverio-Pierluigi)
P5  2009 shifts VS shifts until the end of 2009  2010 plan.
Project Review Novembrer 17th, Project Review Agenda: Project goals User stories – use cases – scenarios Project plan summary Status as of November.
Il DAQ dei pixel per il fascio di test di BTeV S. Magni, D. Menasce L. Uplegger.
Laboratorio II, modulo 2 (Fisica) Tecniche di Acquisizione Dati (Informatica) Giovanni Ambrosi Matteo Duranti
Accesso a ShareGrid mediante VPN ing. Sergio Rabellino Dipartimento di Informatica Università degli Studi di Torino.
Online U. Marconi Milano, 21/9/ ~ 9000 optical link 40 MHz PCIe based readout 30 MHz × 100 kB/evt 5 Gb/s, 300 m long fibres from the FEE directly.
CMS RPC ITALIA' , Settembre Ischia-ITALIA RPC DCS Giovanni Polese.
LE PREPOSIZIONI. Le Preposizioni semplici (Simple prepositions) A preposition describes a relationship between other words in a sentence. In itself, a.
Implementazioni di un analizzatore di protocollo Esistono quattro fondamentali tradeoff per la realizzazione di un analizzatore di protocollo:  Analisi.
LSPE-SWIPE Crate for readout electronics 3 Nov 2014 Marco Incagli, Franco Spinella.
Buon giorno, ragazzi oggi è il quattro aprile duemilasedici.
G. RizzoSVT –Preventivi 2013, June SVT - Attivita ’ 2013 Giuliana Rizzo Universita ’ & INFN Pisa Stato Attivita ’ 2012 Attivita ’ 2013: prime idee.
S VILUPPO ELETTRONICA PER EMC BELLEII INFN ROMA3 Diego Tagnani 10/06/2014 ROMA 3 : D. P.
Interessi e richieste finanziarie per IBL. 2 IBL Lay-out 2  Since IBL is an additive layer, its radiation length has to be extremely small  Geometry.
Lina, Paolo, Tonino, Riccardo.   An assessment of the need for a photo-production facility and its design  The neutron part should not exceed 20 pages.
P. Morettini 23/1/2015P. Morettini - R&D Phase II Italia 1.
1. ELASTICITA’ DELLA DOMANDA potere di mercato (FISSARE IL PREZZO) ≠ da potere contrattuale (TAKE OR LEAVE OFFER CAP 3 e 4) e da potere nell’impresa (CAPACITA’
CdS 19 giugno INFN Sezione di Napoli1 SuperB: presentazione per il CdS SuperB Group INFN ed Universita’ di Napoli - DSF.
Super-B Electronics, Trigger and DAQ Umberto Marconi, INFN Bologna Roma 20/07/
Gruppo storage CCR Nuove attivita’ 2007 Alessandro Brunengo CCR - Roma
From 8 to 80 boxes. From FBSNG to Condor CPU Satura !
Waveform Digitizer Review
Accelerator Disision March 3rd 2015
Preliminary results of DESY drift chambers efficiency test
Transcript della presentazione:

Electronics Trigger and DAQ

Attività TDR Studio dei canali ottici di trasmissione. Sezione di Napoli. Studio del sistema di lettura dati dal FE (ROM readout module): funzione di interfaccia del FEE alla farm HLT. Sezioni di Bologna e Padova. Trigger hardware (L1). Sezioni di Roma1, Roma3 e Napoli.

Richieste Bologna Per test elettronica di trasmissione su bus PCIe2. Si richiede di acquistare una board della PCI-SIG, la quale permette di accedere ai segnali del PCIe bus per portarli ad un oscilloscopio. Costo circa 4.kE. Due sonde attive a elevata banda (>5GHz) per il nostro oscilloscopio "Serial Data Analyzer". Costo circa 10.kE board PCI-SIG usata per certificare elettronica custom come PCIe2 compliant.

ROM Implementation Requirement: input rate less than 10 Gb/s per ROM. ROM board ROM board 10 Gb/s Transport layer over IP network layer (IP packet 64 KB) 1 Ethernet Jumbo frame 9KB 1.8 Gb/s per link × 6 links = 8.4 Gb/s FTCS FCTS pluggable module Input Optical Interface Input Optical Interface Event Processing Event Processing de-randomizer transmission de-randomizer transmission Ethernet Slow Control Ethernet Slow Control PCIe2 Interface

Richieste Napoli

Richieste Roma3 Per ETD due demo board per simulazioni degli algoritmi di trigger.

Trigger Rates and Event Sizes Estimates extrapolated from BaBar for a detector with BaBar- like acceptance. Level-1 trigger rates. – At L=10 36 cm -2 s -1 : 50kHz Bhabha, 25kHz beam backgrounds, 25kHz “irreducible” (physics + backgrounds). -50% headroom desirable (from BaBar experience) for efficient operation. – Baseline150kHz Level-1-accept rate capability. Event size: 100kByte Pre-ROM sizes is about 500kByte. High-Level Trigger and Logging – Expect to be able to achieve 25nb logging cross section with a safe real-time high-level trigger, corresponding to: 25kHz x 100 kB = 2. Gb/s – Logging cross section could be improved by 5÷10 nb by using a more tighter filter in the HLT (there is a cost vs. risk tradeoff). 7

Design Principles Apply lessons learned from BaBar and LHC experiments. Synchronous design No “untriggered” readouts – Except for trigger data streams. Use off-the-shelf components where applicable. – Links, networks, computers, other components. – Software (what can we reuse from other experiments). Modularize the design across the system – Common building blocks and modules for common functions – Implement sub-detector specific functions on specific modules – Carriers, daughter boards, mezzanines Design the FEE with radiation-hardness constraint in mind. Design for high-efficiency and high-reliability. – Design for minimal intrinsic dead time: current goal being 1%. – Automate. Minimize manual intervention. Minimize physical hardware access requirements. 8

Synchronous, Pipelined, Fixed-Latency Design Front-end electronics, Fast Control and Timing System and Trigger synchronized to the global clock. Analog signals sampled with global clock (or multiples of global clock). Samples shifted into latency buffers (fixed depth). Synchronous reduced-data streams derived from some sub-detectors (DCH, EMC, …) and sent to the Level-1 trigger processors. Pipelined Level-1 trigger generates a trigger decision after a fixed latency synchronous to global clock. In case of an L1-accept the readout command is sent to the FCTS and broadcast to the Front-end electronics (over synchronous, fixed-latency links). Front-end electronics transfer data of the corresponding readout window to the de-randomizer buffers for data transmission. Data from de-randomizer buffers are sent over optical links (no fixed latency requirement here) to the Readout Modules (ROMs). Every ROMs in case applies zero suppression / feature extraction and combines event fragments from all its links. Resulting partially event-built fragments are then sent via the network event builder into the HLT farm. 9

Architecture

Dead Time Goal Target is 1% event loss due to DAQ system dead time. – Not including trigger blanking for trickle injection. Assume “continuous beams” – 2.1ns between bunch crossings. – No point in hard synchronization of L1 with RF. 1% event loss at 150kHz requires 70ns maximum per- event dead time in trigger, FCTS and FEE-ROM chain. Challenging demands on: – Intrinsic detector dead time and time constants. – L1 trigger event separation. – Command distribution and command length (1 Gbit/s). 11

Optical Links Elemento essenziale dell’architettura, per la trasmissione di clock, comandi e dati. Dispositivi di serializzazione/deserializzazione candidati: – Trasmissione clock e comandi (capacità 1Gb/s) Ser/Des della National modello DS92LV18 – Trasmissione dati (capacità 2 Gb/s) Ser/Des della Texas Instruments modello TLK2711A Il Ser/Des per clock e comandi è molto promettente: – Link con latenza deterministica. – Buon comportamento sotto irraggiamento. – Lavoro di qualifica da completare nel 2012 o oltre. Il Ser/Des per la trasmissione dei dati è sotto esame.

Studio del layer ottico di trasmissione richiede: – Selezione di dispositivi commerciali disponibili, considerando le diverse tecnologie disponibili: VCSEL, FP laser. – Valutazione della  lunghezza idonea alla trasmissione  850 vs.1300 nm , valutazione dei problemi di jitter, caratteristiche del canale fisico di trasmissione (mono, multi-modo). – Studio delle prestazioni (BER). – Studio del danno da radiazione. Optical Links II

Fast Control and Timing System (FCTS) Links carrying trigger data, clocks and commands need to be synchronous & fixed latency: ≈ 1GBit/s Readout data links can be asynchronous, variable latency and even packetized: 1.8 Gb/s (32 MHz) Clock distribution System synchronization Command distribution – L1-Accept Receive trigger decisions from L1 Participate in pile-up and overlapping event handling Dead time management – Fast throttle emulates front- ends in Fast Control and Timing Master (FCTM) – Slow throttle via feedback (could even use GigE) System partitioning – 1 partition / subdetector Event management – Determine event destination in event builder / high level trigger farm 14

Common Front-End Electronics Provide standardized building blocks to all sub-detectors, such as: – Schematics and FPGA “IP” – Daughter boards – Interface & protocol descriptions – Recommendations – Performance specifications – Software Digitize Maintain latency buffer Maintain de-randomizer buffers, output multiplexing and data link transmitter. Generate reduced-data streams for L1 trigger. Interface to FCTS – Receive clock and commands Interface to ECS – Configure – Calibrate – Spy – Test – etc. 15

Readout Modules (ROMs) Implement FEE-specific requirements Receive data from the sub- detectors over optical links 10 Gb/s entering a ROM – Order of 100 ROM needed. Reconstitute linked/pointer events. Process data (FEX, data reduction). Send event fragments into HLT farm (network). 16 We would like to use off-the shelf commodity hardware as much as possible. R&D to use off-the shelf computers with PCI-Express cards for the optical link interfaces in progress.

Event Builder and Network Combines event fragments from ROMs into complete events in the HLT farm. Prefer the fragment routing to be determined by FCTS FCTS decides to which HLT node all fragments of a given events are sent (enforces global synchronization), distribute as node number via FCTS – Event-to-event decisions taken by FCTS firmware (using table of node numbers) – Node availability / capacity communicated to FCTS via a slow feedback protocol (over network in software) Choice of network technology – Combination of10Gbit/s and 1GBit/s Ethernet prime candidate – UDP vs. TCP … a long contentious issue: pros and cons to both. – Can we use DCB/Converged Ethernet for layer-2 end-to-end flow control in the EB network? 17

High-Level Trigger Farm and Logging Standard off-the shelf rack-mount servers. Receivers in the network event builder: receive event fragments from ROMs, build complete events. HLT trigger (Level-3) – Fast tracking (using L1 info as seeds), fast clustering. – 10ms/event is baseline assumption, 5-10x what the BaBar L3 needed on vintage CPUs, plenty of headroom. – 1500 CPU cores needed on contemporary hardware: ~150 servers 16 cores, 10 usable for HLT purposes. Data logging & buffering – Few TByte/node. – Local disk (e.g. RAID1 as in BaBar)? – or - – Storage servers accessed via a back-end network? – Probably 2 days’ worth of local storage (2TByte/node)? Depends on SLD/SLA for data archive facility. – No file aggregation into “runs”  bookkeeping – Back-end network to archive facility 18

Data Quality Monitoring, Control Systems Data Quality Monitoring – Same concepts as in BaBar: – Collect histograms from HLT – Collect data from ETD monitoring – Run fast and/or full reconstruction on sub-sample of events and collect histograms May include specialized reconstruction for e.g. beam spot position monitoring – Could run on same machines as HLT processes (in virtual machines?) or a separate small farm (“event server clients”) – Present to operator via GUI – Automated histogram comparison with reference histograms and alerting Control Systems – Run Control Coherent management of the ETD and Online systems – User interface, managing system-wide configuration, reporting, error handling, start and stop data taking – Detector Control / Slow Control Monitor and control detector and detector environment – Maximize automation across these systems Goal: 2-person shifts like in BaBar “auto-pilot” mode where detector operations is controlled by the machine Automatic error detection and recovery where possible – Assume we can benefit from systems developed for the LHC, the SuperB accelerator control system and commercial systems 19