Slides 2 2014-2015.

Slides:



Advertisements
Presentazioni simili
Scienze della Terra I MINERALI.
Advertisements

GEOLOGIA (studio della litosfera)
Calcolo vettoriale E.F. Orsega – Università Ca’ Foscari di Venezia
Definizione Dati un punto O del piano α e un numero reale k ≠ 0, si dice omotetia di centro O e rapporto k la trasformazione del piano in sé che associa.
Sistema di riferimento sulla retta
Breve excursus Solidi molecolari Ovvero: I legami
Definizione di combinazione
Cap. 11 I Quadrilateri.
Cinematica diretta Un manipolatore è costituito da un insieme di corpi rigidi (bracci) connessi in cascata tramite coppie cinematiche (giunti). Si assume.
STRUTTURA DEI CRISTALLI
MINERALI Perché è necessario studiarli e conoscerne le proprietà ?
STEREOS: SOLIDO METRIA: MISURAZIONE
Definizione e caratteristiche
1 Grandezze omogenee, commensurabili e incommensurabili
Elementi di Matematica
Considera un quadrato inscritto in una circonferenza di raggio r
Poligoni inscritti e circoscritti
I MINERALI Lavoro svolto da un gruppo di alunni della III A scuola secondaria di I grado a.s. 2008/2009.
Le trasformazioni del piano
Spazi vettoriali astratti Somma e prodotto di n-ple Struttura di R n.
Trasformazioni Geometriche
Distanza fra atomi/molecole 1019 molecole/cc (T, P standard)
I poliedri.
I solidi.
I solidi.
Unita’ Naturali.
Un modello per interpretare, interagire e descrivere la realtà
IV prova di laboratorio: verifica della legge dei punti coniugati e delle leggi di Snell Set-up sperimentale.
STRUTTURE CRISTALLINE
Vettori dello spazio bidimensionale (R 2)
Le isometrie.
Triangoli Classificazione Proprietà triangoli equilateri
SIMMETRIA Con questo termine si indica il tipo di ordine che si riscontra in una figura nella disposizione delle varie parti che lo costituiscono.
Riducendo l’agitazione termica  legami tra molecole più stabili
CHIMICA APPLICATA TECNOLOGIA DEI MATERIALI
Geometria Solida Poliedri Prima parte.
LA RETTA Assi cartesiani e rette ad essi parallele
“La cassetta degli arnesi”
CIRCONFERENZA E CERCHIO
I MINERALI Il minerale è una sostanza naturale solida, caratterizzata da composizione chimica ben definita e con una disposizione ordinata e regolare.
Trasformazioni geometriche
Prof. Giovanni Ianne I vettori.
Le funzioni goniometriche
FASE Diversi stati fisici della materia e forme alternative di un medesimo stato fisico. Esempi di fase sono il ghiaccio e l’acqua liquida. Il diamante.
APPUNTI DI GEOMETRIA ANALITICA DELLA RETTA
Le funzioni matematiche e il piano cartesiano
I poliedri diagonale DEFINIZIONE. Un poliedro è la parte di spazio delimitata da poligoni posti su piani diversi in modo tale che ogni lato sia comune.
La circonferenza e l’ellisse La sezione conica è l’intersezione di un piano con un cono. La sezione cambia a seconda dell’inclinazione del piano. Se il.
Slides Mineralogia descrittiva La mineralogia oggi è una disciplina molto vicina alla chimica e alla fisica ma è nata essenzialmente come.
IL PIANO CARTESIANO E LA RETTA
CNOS-FAP San Donà di Piave A cura di Roberto Marcuzzo TRIGONOMETRIA PIANA La trigonometria nasce attorno ai secoli III e II a.C. e si presenta come metodo.
a’ = f(a) Definizione e proprietà
1. Le coordinate di un punto su un piano Le coordinate di un punto su un piano 2. La lunghezza e il punto medio di un segmento La lunghezza e il punto.
Parte Prima (circa 2 ore di lezione frontale)
Lo Stato Solido Lo stato solido è lo stato di aggregazione della materia in cui le forze attrattive tra le particelle (ioni, atomi, molecole) prevalgono.
Tra due corpi carichi, con carica Q A e Q B si manifesta una forza il cui valore è dato da Questo valore è: 1.Direttamente proporzionale al prodotto delle.
angoli orientati negativamente se la rotazione avviene in verso orario
Vettori in R n. I vettori I vettori sono gli oggetti matematici che costituiscono la base di tutte le teorie fisiche. Le grandezze fisiche si distinguono.
Simmetrie La forma di un cristallo consiste nella combinazione dei vari elementi di simmetria presenti nel cristallo stesso ed è inoltre determinata.
RETICOLI DI BRAVAIS.
Luoghi di punti In geometria il termine
Slides
TRASFORMAZIONI GEOMETRICHE.
La Circonferenza. LA CIRCONFERENZA Assegnato nel piano un punto C detto Centro, si chiama circonferenza la curva piana con i punti equidistanti da C.
PRESENTAZIONE DI GEOMETRIA SOLIDA
Le frazioni A partire da N vogliamo costruire un nuovo insieme numerico nel quale sia sempre possibile eseguire la divisione. Per fare ciò dobbiamo introdurre.
Le trasformazioni non isometriche
Transcript della presentazione:

Slides 2 2014-2015

Un cristallo è un corpo “solido” in cui gli atomi sono disposti in modo ordinato e periodico e oscillano intorno a definite posizioni dello spazio

Per arrivare al concetto di reticolo cristallino, fondamentale in cristallografia, è opportuno svincolarsi dalla natura fisica delle particelle costituenti la struttura considerando solo il loro baricentro. Il reticolo cristallino è, pertanto, un insieme omogeneo di un numero infinito di punti detti Nodi, tutti i nodi sono equivalenti.

disposizione tridimensionale, ordinata, periodica 2 filare x 1 vettore di traslazione 1 y piano reticolare  filare maglia maglia nodo x reticolo cristallino x y z 1 2 3 nodo Reticolo cristallino Cella elementare 

filari Piani reticolari A: due famiglie di filari paralleli diversamente orientate: intersecandosi delimitano una maglia B: due famiglie di piani reticolari paralleli e diversamente orientati: intersecandosi delimitano una cella. filari 1 2 3 4 Piani reticolari

Rappresentazione di: filare (a), piano reticolare (b) reticolo cristallino © Scelta della maglia e della cella elementare Cella multipla Cella elementare

Scelta della maglia Lati // ad elementi di simmetria m: piani di simmetria

Le maglie che costituiranno le basi delle celle elementari sono di 5 tipi. Le uniche forme geometriche bidimensionali che, se poste a immediato contatto e tutte uguali danno continuità, sono: 1) parallelogrammi generici, rombi generici, rettangoli 2) quadrati 3) triangoli equilateri (che accoppiati danno un rombo con angoli di 60° e 120°) 4) esagoni regolari (che scomposti danno tre rombi con angoli di 60° e 120°)

Tipi di maglie

Scelta della Cella elementare: a:b:c α β γ Spigoli // o  a elementi di simmetria

NaCl: rappresentazioni di un reticolo cristallino

Galena PbS

La cella elementare è una porzione del reticolo Il reticolo di traslazione è un’entità virtuale caratteristica nella sua forma e dimensione di ogni sostanza cristallina: cella elementare La cella elementare è una porzione del reticolo cristallino che possiamo scegliere con un margine di arbitrarietà secondo regole convenzionali (es. vettori // o  a elementi di simmetria), in modo da semplificare al massimo la descrizione della struttura

La morfologia cristallina rispecchia le proprietà reticolari Le facce che delimitano un cristallo sono parallele ai piani reticolari più densi di particelle (terza legge della cristallografia); Tanto più denso di particelle è il piano, tanto maggiore è l’importanza della faccia corrispondente

I solidi di Platone IV sec. A.C. Osservazioni sulle forme dei cristalli I solidi di Platone IV sec. A.C. Platone descrive i cinque poliedri regolari e le loro proprietà

Osservazioni sulle forme dei cristalli Vannuccio Biringuccio (1480-1539) metallurgista senese (pirite) Niels Stensen (1638-1686) medico danese (quarzo) Domenico Guglielmini medico bolognese (1655-1710) (Saltrino KNO3, salgemma,) Jean Baptiste, Louis Romé de l’Isle (1736-1790) enunciò la legge

Leggi della cristallografia morfologica Leggi desunte dallo studio delle forme dei cristalli sin dal XVIII secolo Tali leggi mantengono la loro validità concettuale Sono storicamente importanti rappresentando il punto di partenza della cristallografia

1° legge della cristallografia Legge della costanza dell’angolo diedro Stenone 1669 - Romè de l’Isle 1772 Il valore dell’ angolo diedro tra facce corrispondenti di cristalli di una stessa specie è costante a temperatura e pressione costante ed è caratteristico di quella specie cristallina

Legge costanza angolo diedro Niels Stensen 1638 -1686 Jean-Baptiste Romé de L‘Isle 1736 -1790

a) habitus regolare; b) - c) habitus deformato Cristalli di quarzo b c a Cristalli esagonali a) habitus regolare; b) - c) habitus deformato valori angolari costanti Le facce del cristallo dipendono in parte dalla cella elementare e sono dipendenti dalle condizioni di crescita del cristallo T, P, natura della soluzione, disponibilità di spazio 120º

Goniometro ad applicazione Garangeot 1783

Evoluzione dei goniometri

Goniometri a riflessione I goniometri a riflessione utilizzano la possibilità che hanno le facce di un cristallo di riflettere la luce fatta incidere su di esse. I goniometri a riflessione si distinguono in goniometri ad 1 cerchio e goniometri a 2 cerchi

Schema Goniometro a riflessione Wollaston 1807

Diverso sviluppo delle facce Il diverso sviluppo delle singole facce porta spesso a cristalli sproporzionati, questi possono essere ricondotti a cristalli regolari traslando le facce parallelamente a se stesse, mantenendo quindi inalterati i valori degli angoli diedri

Diverso sviluppo delle facce nei cristalli spropor-zionati

Molecola integrante: entità fisica Cella elementare: entità geometrica (1748) Haüy Molecola integrante: entità fisica Cella elementare: entità geometrica Considerando il Romboedro di sfaldatura e successivamente altri romboedri via via più piccoli si giunge alla molecola integrante che si può considerare il mattone dell’edificio cristallino. Spiegazione di Haüy per la forma geometrica esterna di qualunque cristallo Solidi di sfaldatura: CaCO3 calcite romboedro NaCl salgemma cubo, CaF2 fluorite ottaedro Romboedro di sfaldatura 1

Giustapposizioni crescenti o decrescenti di molecole integranti

Legge di Haüy: Metodo scientifico Questa legge illustra bene il modo di procedere del metodo scientifico: a) partire dal dato sperimentale – osservazione e misura b) elaborare un’ipotesi c) sviluppare una teoria d) trarre delle previsioni e) ritornare all’esperienza per la verifica della teoria f) se il confronto non è soddisfacente la teoria viene rivista

Il miglior modo di rappresentare la morfologia di un cristallo è quello di riferire facce e spigoli a una terna di assi la cui origine coincide con il baricentro del cristallo. NB: dal punto di vista cristallografico la posizione dell’origine non ha alcuna importanza.

Legge di Haüy: terna assiale Dato un cristallo, si scelgono tre spigoli non complanari reali o possibili (assi di simmetria). Gli assi cristallografici (x y z) si traslano nel baricentro del cristallo.

Fissata la terna assiale si sceglie una faccia, detta faccia fondamentale, che deve essere inclinata sui versi positivi dei tre assi in modo da intersecare gli assi x y z, a distanze diverse dall’origine degli assi. Scegliamo una altra faccia che può presentare una qualsiasi giacitura. Z Y X

La faccia fondamentale staccherà sui tre assi i Segmenti OA OB OC, le cui distanze fra le intersezioni della faccia e l’origine sugli assi, sono in relazione con i parametri a b c di cui non conosciamo i valori assoluti ma unicamente i valori dei loro rapporti a:b:c Analogamente una qualsiasi altra faccia staccherà segmenti A’O B’O C’O le cui distanze sono in Relazione con i parametri a’ b’ c’ di cui non valori dei loro rapporti a’:b’: c’

Legge di Haüy AO = a BO = b CO = c A’O = a’ B’O = b’ C’O = c’ a:b:c è il rapporto parametrico della faccia fondamentale; a’:b’:c’ è il rapporto parametrico di una qualsiasi altra faccia Le costanti angolari , ,  e il rapporto parametrico fondamentale, costituiscono le costanti cristallografiche di ogni minerale Faccia fondamentale b

Legge di Haüy: legge della razionalità degli indici Haüy notò che i rapporti dei rapporti parametrici delle due facce sono numeri razionali ossia tre numeri interi, primi fra loro e generalmente piccoli  3 (facce ben sviluppate) a/a’= m b/b’= n c/c’= p a/a’: b/b’: c/c’ = m : n : p = 2:3:1 genericamente indicati con h : k : l (hkl) sono gli indici di Miller; detti indici delle facce I tre simboli si riferiscono ai tre assi x y z ed esprimono la giacitura della faccia (hkl) si legge meno h k l

Simboli delle facce I tre numeri (quattro per il sistema esagonale) chiusi fra parentesi tonde (hkl) (hwkl)indicano la giacitura della faccia e ne sono il simbolo. (h k l ) assi tagliati dal lato negativo NB La faccia fondamentale se confrontata con se stessa avrà questo rapporto:a/a b/b c/c pertanto avrà simbolo (hhh) che possiamo scrivere come (111) [da non confondere con il simbolo della faccia dell’ottaedro]

Simboli delle facce di un cubo a/a’ = h b/ = 0 c/ = 0 (100)

Nel Sistema cubico classe oloedrica Simbolo delle forme Il simbolo di una forma cristallina per ogni classe è dato dagli indici chiusi fra parentesi graffa {hkl} Le forme cristalline possibili nelle 32 classi di simmetria sono 48 *********** Nel Sistema cubico classe oloedrica {100} indica il simbolo della forma cristallina cubo {hkl} indica il simbolo della forma cristallina esaciottaedro

Forma generale- Forma speciale In ognuna delle 32 classi di simmetria è presente almeno 1 forma le cui facce tagliano tutti gli assi cristallografici con lunghezze diverse. Questa è la forma cristallina generale caratterizzata dal maggior numero di facce il cui simbolo è {hkl}. Le forme le cui facce sono vincolate da realzioni di perpendicolarità o parallellismo con gli elementi di simmetria sono dette forme cristalline speciali e hanno un numero minore di facce rispetto alla forma generale

Le 7 forme della classe oloedrica del sistema cubico 1) Cubo 2) ottaedro 3) rombododecaedro 4) tetracisesaedro 5) icositetraedro 6) triacistetraedro 7) esaciottaedro

Simbolo dello spigolo L’incontro di due facce forma uno spigolo di un cristallo Il suo simbolo può ricavarsi dai simboli delle facce tramite un calcolo matriciale Per convenzione il simbolo di uno spigolo si scrive [uvw]

Legge di Bravais (1849) integrata da Donnay e Harker (1937) - Terza legge della cristallografia La morfologia cristallina rispecchia le proprietà reticolari Le facce che delimitano un cristallo sono parallele ai piani reticolari più densi di particelle (terza legge della cristallografia); Tanto più denso di particelle è il piano, tanto maggiore è l’importanza della faccia corrispondente

Piani reticolari e facce dei poliedri cubo ottaedro rombododecaedro

Legge di Bravais (1849) integrata da Donnay e Harker (1937) La velocità di crescita di una faccia è inversamente proporzionale alla sua densità atomica. Le facce di più rapida crescita tendono ad essere eliminate; Le facce a crescita più lenta invece persistono e assumono sempre maggior importanza

NaCl ottaedro - cubo