21 Marzo 2006Luca Vaccarossa - INFN Milano Utilizzo dello storage da parte degli esperimenti: ATLAS Workshop sullo Storage 20 e 21 Marzo 2006 CNAF Bologna.

Slides:



Advertisements
Presentazioni simili
Cache Memory Prof. G. Nicosia University of Catania
Advertisements

V.I.D.E.O. Video-CV to Increase and Develop Employment Opportunities
ALICE-Italia: IL CALCOLO
P. Capiluppi Organizzazione del Software & Computing CMS Italia I Workshop CMS Italia del Computing & Software Roma Novembre 2001.
1 La farm di ATLAS-Napoli 1 Gb/s 7 nodi con 2 CPU PIII a 1 GH, RAM 512 MB, 2 schede di rete a 100 Mb/s. Server con 2 CPU PIII a 1 GH, RAM 1 GB, 2 schede.
Queuing or Waiting Line Models
Last quarter work and future activities
FASTVID RENTALS: BUSINESS MODELING 1. Business Modeling One of the major problems with most business engineering efforts, is that the software engineering.
ATLAS Distributed Analysis Lamberto Luminari CSN1 – Roma, 16 Maggio 2006.
FESR Consorzio COMETA Pier Paolo CORSO Giuseppe CASTGLIA Marco CIPOLLA Industry Day Catania, 30 Giugno 2011 Commercial applications.
Infrastruttura GRID di produzione e i T2 Cristina Vistoli Cnaf.
PINK FLOYD DOGS You gotta be crazy, you gotta have a real need. You gotta sleep on your toes. And when you're on the street. You gotta be able to pick.
16 Maggio CSN1 Computing-Software-Analysis CMS-INFN TEAM Analisi in CMS: stato e prospettive del supporto italiano.
G. Martellotti Roma RRB 16 Aprile Presentazione M&O cat A (per LHCb i M&O cat B sono gestiti autonomamente e non sono scrutinati fino al 2005/2006)
Un problema multi impianto Un’azienda dispone di due fabbriche A e B. Ciascuna fabbrica produce due prodotti: standard e deluxe Ogni fabbrica, A e B, gestisce.
Accoppiamento scalare
Viruses.
Mobilità tra i Paesi del Programma KA103 A.A. 2014/2015 (KA103) Mobility Tool+ e il Rapporto Finale Claudia Peritore Roma luglio 2015.
L A R OUTINE D EL M ATTINO Ellie B.. Io mi sono svegliata alle cinque del mattino.
Halina Bilokon ATLAS Software di fisica DC1 – DC2 DC1 aprile fine 2003 (versioni di software  3.x.x – 7.x.x)  Validation del Software  Aggiornamento.
CSN M. Diemoz CMS – RRB24 SOLDI INVESTITI BENE...
Project Review Novembrer 17th, Project Review Agenda: Project goals User stories – use cases – scenarios Project plan summary Status as of November.
Storage (ieri, oggi e domani) Luca dell’Agnello INFN-CNAF.
Michele Punturo INFN Perugia 1. Riunione di oggi Mattina: problemi immediati – Trasferimento dati da LIGO (Luca Rei) – Trasferimento dati da.
Domenico Elia1 Calcolo ALICE: stato e richieste finanziarie Domenico Elia Riunione Referee Calcolo LHC / Padova, Riunione con Referee Calcolo.
Aggiornamento attivita’ gruppo Windows Gian Piero Siroli, Dip. di Fisica, Università di Bologna e INFN CCR, ottobre 2007.
MSc in Communication Sciences Program in Technologies for Human Communication Davide Eynard Facoltà di scienze della comunicazione Università della.
Organizzazione e Formazione per l’arresto cardiaco in ospedale Overview Epidemiologia dell’ arresto intraospedaliero Criticita’ organizzative Applicazioni.
Domenico Elia1 Calcolo ALICE: stato e richieste finanziarie (aggiornamenti) Domenico Elia Riunione Referee Calcolo LHC / Bologna, Riunione con.
Do You Want To Pass Actual Exam in 1 st Attempt?.
Riunione ALICE Italia - Referee stato e richieste finanziarie
Problema T1 30 settembre Andrea Chierici CDG T1.
Riunione INFN – Bologna, 17 January 2013
WRITING – EXERCISE TYPES
MONBOX Federico Bitelli bitelli<at>fis.uniroma3.it
Calorimetro LAR ATLAS Italia Roma 28 novembre 2008
Next generation data center Digital360 Award – 2017 edition
Dichiarazione dei servizi di sito nel GOCDB
Jobs and occupations What do they do?
Gruppo storage CCR Nuove attivita’ 2007 Alessandro Brunengo CCR - Roma
Servizi per CCRC, INFN Grid release, stato dei servizi centrali e T2
From 8 to 80 boxes. From FBSNG to Condor CPU Satura !
Daniele Pedrini INFN Milano-Bicocca
Assegnazione risorse Stato INFN CNAF,
Metriche SE monitoring G.Donvito G.Cuscela INFN Bari
Analisi dei dati dell’Esperimento ALICE
JetWalk: Agenda e review committee
(Breve) Riassunto del workshop WLCG
Portal Architecture Data Management
Gigi Cosentino - LNL 20 ottobre 2016
PI2S2 Regional Operation Centre Sistema di Supporto Sistema di Monitoring Rita Ricceri Consorzio Cometa Tutorial per Site Administrator Messina,
Job Application Monitoring (JAM)
ONEDATA - distributed data caching -
WARGI-DSS Andrea Sulis, Ph.D.
le Attivita' Computing Analisi Muoni: Detector(s) e Trigger
Highlights del meeting ESPP di Cracovia Settembre 2012 (FISICA DI G1)
AusTel by taha.a.
X. Specifications (IV).
Atlas Milano Giugno 2008.
Studente : Andrea Cassarà Classe: 5AII A.S. 2014/2015 Link Sito
Proposal for the Piceno Lab on Mediterranean Diet
General Office for Airspace
Implementing SIS at clinical level
SWORD (School and WOrk-Related Dual learning)
INFN-Grid DI PRODUZIONE grid-use-model grid.infn.it
Study of Bc in CMSSW: status report Silvia Taroni Sandra Malvezzi Daniele Pedrini INFN Milano-Bicocca.
CdS 2017: embargo fino a TAUP2017
A comparison between day and night cosmic muons flux
Wikipedia Wikipedia è un'enciclopedia online, collaborativa e libera. Grazie al contributo di volontari da tutto il mondo, Wikipedia ad ora è disponibile.
Next generation data center Digital360 Award – 2017 edition
Transcript della presentazione:

21 Marzo 2006Luca Vaccarossa - INFN Milano Utilizzo dello storage da parte degli esperimenti: ATLAS Workshop sullo Storage 20 e 21 Marzo 2006 CNAF Bologna Luca Vaccarossa INFN – Sezione di Milano

21 Marzo 2006Luca Vaccarossa - INFN Milano Outline Analisi via Grid –Possibile Workflow –Tipo di file, dimensione tipica –Throughput tipico Gestione delle politiche di autorizzazione & Quota Management Esperienza con i vari SE nei siti

21 Marzo 2006Luca Vaccarossa - INFN Milano Job di Analisi via Grid Vari sistemi di analisi in sperimentazione Qui Consideriamo il seguente scenario: Analisi tramite ProdSys + DQ2 Data Catalogue: LFC (sia locale che globale) Accesso ai dati locale (copia dallo SE al WN)

21 Marzo 2006Luca Vaccarossa - INFN Milano Referenze Alcune trasparenze riprese da: Presentazione di F.Ambrogini e S.Resconi III Workshop Italiano sulla fisica di ATLAS e CMS Bari, 21 Ottobre 2005 Stato del Software e del Modello di Analisi piani per il commissioning e la presa dati

Computing Element Storage Element Site Z ATLASProductionSystem Computing Element Storage Element Site X User Interface Computing Element Storage Element Site Y (1) (2) (3) Some functionalities have been recently implemented in the Prod System to support distributed analysis : Shipping of customized analysis algorithms (private code to be compiled remotely) Submission of jobs to sites were the input data are already available the ATLAS Production System, which has been used to run Rome production jobs on 3 GRIDS, can be one possible tool also to perform analysis using GRID resources. (1) Analysis job defined by the user is split in "n" identical jobs and (2) sent to the "n" GRID sites where input data are stored. (3) output files are merged and final output sent to user Distributed Analysis : one possible scenario “data-driven” scenario: analysis jobs are sent on sites where data are stored

21 Marzo 2006Luca Vaccarossa - INFN Milano Event Data Model: Different types of data corresponding to different stages of Reconstruction : Contains a summary of the reconstructed event for common analyses: jets, (best) id of particles. POOL format ~1-10 kB/event Relevant information for fast event selection in AOD and/or ESD files Triggered events recorded by DAQ Reconstructed info : Analysis Object Data : analysis info Fast selection info Contains the detailed output of the detector reconstruction, includes : track candidates, hits, cells intended for calibration. POOL format = combines ROOT I/O with MySQL relational DB ~100 kB/event AOD TAG ~1.6 MB/event RAW ESD/RECO ~1.2 MB/event target size = ~ 500 KB/event

Is currently evolving due to increasing knowledge of what is actually needed for analysis. ESD, 1 MB/evento, 1 file (1000 eventi) = 1 GB AOD, 100 kB/evento, 1 file = 100 MB Back navigation AOD  ESD : process that searches in ESD or RAW data for objects that are not found in AOD during analysis. Example : from a TauJet object in AOD is possible to navigate back to its constituents clusters, cells and tracks in the corresponding ESD file TauJet TrackParticle/ID tauObject CaloCluster TrackParticle/ID CaloCell Track/ID ESDAOD Vertex/Primary solid line = direct navigation dashed line = duplication of objects Dimensioni e Contenuto dei file ESD/RECO e AOD :

21 Marzo 2006Luca Vaccarossa - INFN Milano Throughput tipico di un job di Analisi Ogni job di analisi si copia sul WN il file AOD di input dal closeSE (~1 MB/s) Il file di output (1-10 MB) viene copiato sulla UI per l’analisi interattivita (dimensionamento della Output Sandbox del Broker) In una situazione tipica 2/3 dei job-slot potrebbero essere job di analisi (accesso contemporaneo allo storage). 100 job-slots x 1 MB/s = 100 MB/s

21 Marzo 2006Luca Vaccarossa - INFN Milano Attuale situazione dell’Analisi Main problems about analysis on AOD and possible solutions : much effort spent in building the C++ analysis class into Athena Interactive Analysis ( under development ) AOD processing SLOWER respect to CBNT (Combined Ntuples): –to process 35k evts from AOD : ~ 30 min from CBNT : ~ 5 min Athena-Aware Ntuples ( under development ) the transfer of AOD/CBNT was one of the major problem: –problems with GRID Data Management Tools and with some SE’s in GRID sites Distributed Analysis ( under development )

ATLAS Software Validation … and Commissioning : Il Data Challenge (DC-3), previsto per la fine 2005, e’ stato sostituito dal CSC (Computing System Commissioning) che consiste in una serie di attivita’ designate a validare tutti gli aspetti del computing and software prima del turn-on di ATLAS nel 2007 ATLAS Validation in next future, three step process : –Nightly validation by RTT (Run Time Test) : package specific tests done automatically, results are accessible via web page, currently 197 different tests on 18 different packages –10^5 sample will be run on GRID for every major (usable) release (Oct 05) 100k events from physics samples, for example: Min Bias, Z  ee, Z , Z , H   (120 GeV), W  , b- tagging samples, top, QCD di-jets samples in different pT bins, single particles for calibration purposes Overview delle prossime Attivita’

ATLAS Software Validation … and Commissioning : –10^6 sample will be run on GRID for all “production releases”, to be completed in one week 1M events, ~25 physics samples, quite all the samples above and more validation of full software chain from generation to reconstruction before passing to real production Real production : –10^7 events (DC2/Rome prod scale), typical scale of distributed production samples, to be completed in 6-8 weeks(primavera-estate 2006) : –For example, 10M events from physics groups: at least 100k per sample, 500k events for each sample used for validation, plus additional physics samples –full software chain (event generation, simulation, digitization, pileup, reconstruction, tag/merging, analysis)

21 Marzo 2006Luca Vaccarossa - INFN Milano Gestione delle Politiche di autorizzazione & Quota Management Atlas vuole usare VOMS per la gestione delle politiche di autorizzazione con una granatura delle politiche che permetta di dividere i vari gruppi della VO (produzione, analisi, etc) ed assegnare differenti ruoli (grid-sw-manager, production-manager, utente semplice)

Dario Barberis: VOMS for ATLAS GDB - 8 March 2006 VOMS for ATLAS l Dario Barberis l CERN & Genoa University

Dario Barberis: VOMS for ATLAS GDB - 8 March 2006 What can VOMS do for us? l ATLAS is a very large VO (the largest?) and consists of several “activity groups” that will compete for computing resources l Assume we have defined VOMS groups and roles and registered all ATLAS VO members accordingly l Naively we would like to use this information for: nMonitoring & accounting nAssigning job priorities nAllocating disk storage space l We would also expect to be able to specify requirements and use the information at user, group and VO level l We have therefore to be able to assign resources to activity groups and get accurate monitoring and accounting reports

Dario Barberis: VOMS for ATLAS GDB - 8 March Dimensions l Roles: nGrid software administrators (who install software and manage the resources) nProduction managers for official productions nNormal users l Groups: nPhysics groups nCombined performance groups nDetectors & trigger nComputing & central productions l Funding: nCountries and funding agencies

Dario Barberis: VOMS for ATLAS GDB - 8 March 2006 Group list nphys-beauty phys-top phys-sm nphys-higgs phys-susy phys-exotics nphys-hi phys-gener phys-lumin nperf-egamma perf-jets perf-flavtag nperf-muons perf-tau trig-pesa ndet-indet det-larg det-tile ndet-muon soft-test soft-valid nsoft-prod soft-admingen-user l It is foreseen that initially only group production managers would belong to most of those groups nAll Collaboration members would be, at least initially, in “gen-user” nSoftware installers would be in soft-admin l The matrix would therefore be diagonal nOnly ~25 group/role combinations would be populated

Dario Barberis: VOMS for ATLAS GDB - 8 March 2006 Job Priorities l Once groups and roles are set up, we have to use this information l Relative priorities are easy to enforce if all jobs go through the same queue (or database) l In case of a distributed submission system, it is up to the resource providers to: nagree the policies of each site with ATLAS npublish and enforce the agreed policies l The jobs submission systems must take these policies into account to distribute jobs correctly nthe priority of each job is different on each site l Developments are in progress in both OSG and EGEE in this direction nBut we do not have any complete solution to this problem yet

Dario Barberis: VOMS for ATLAS GDB - 8 March 2006 Storage allocation l The bulk of ATLAS disk storage will be used by central productions and organized group activities l Disk storage has to be managed according to VOMS groups on all SE’s available to ATLAS l In addition, individual users will have data they want to share with their colleagues on the Grid nSimilarly to the way (ATLAS) people use public directories and project space on lxplus at CERN l Therefore, again, we need resource allocation and accounting at user, group and VO level

Dario Barberis: VOMS for ATLAS GDB - 8 March 2006 My naive conclusions l Most members of the Collaboration have not been confronted yet with the limitations of current Grid middleware nThey expect a simple extension of the common batch systems (such as CERN)  User disk space  Project (group) space  Fair share job submission l VOMS is a step forward wrt the “free for all” current situation nBut the consistent implementation of all client tools is needed NOW!

21 Marzo 2006Luca Vaccarossa - INFN Milano Esperienza con i vari SE nei siti Grazie a G.Negri per i feedback I maggiori problemi si sono avuti con i vari CASTOR (difficile accedere ai files residenti su nastro). –Richiesta fondamentale ATLAS: potere decidere che alcuni file restano comunque su disco Troppe connessioni a CASTOR fanno crashare il server gridftp. lcg-tools “non-intelligenti” (il timeout è a tempo fisso, rischia di tagliare trasferimenti lenti)