Stato dell'esperimento LUNA giugno 2013 Alessandra Guglielmetti Università degli Studi di Milano e INFN, Milano, ITALY Laboratory Underground Nuclear Astrophysics 17 O(p, ) 18 F (coordinatrice Alba Formicola) 17 O(p, ) 14 N (coordinatori Alba Formicola/Matthias Junker) 22 Ne(p, ) 23 Na (coordinatore Daniel Bemmerer) Pubblicazioni Progetto premiale LUNA MV e stato di ERLUNA
17 O(p, ) 18 F measurement 17O+p is very important for hydrogen burning in different stellar environments: - Red giants - Massive stars - AGB - Novae 1.production of light nuclei ( 17 O/ 18 O abundances....); 2. observation of 18 F -ray signal (annihilation 511 keV). Classical novae T= GK => E Gamow = 100 – 260 keV Resonant Contribution: 17 O(p, γ ) 18 F resonance at E p = 183 keV and non resonant contribution
NuPECC - Milan O(p,γ) 18 F experimental setup Proton energy range : E= keV average current I ~ 300 μA
17 O(p, ) 18 F measurement 183 keV resonance: =1.67±0.12 eV (weighted average of prompt and activation) Several new transitions identified and branching ratios determined
17 O(p, ) 18 F results Best fit of available data Improvement of a factor of 4 in the reaction rate uncertainty! A. Caciolli et al., Eur. Phys. J. A (2012) 48:144 D. Scott et al., Phys. Rev. Lett. 109 (2012) (Editors' suggestion) A Di Leva et al., to be submitted to Phys. Rev C.
17 O(p,α) 14 N measurement Q= 1.2 MeV Never measured AGB stars ( T= GK ) Classical Novae ( T= GK ) rare isotopes production
17 O(p,α) 14 N – experimental setup 8 silicon detectors Beam entrance solid Ta 2 O 5 target (not visible) 17 O enriched Al+Mylar (2 μm) To stop scattered protons
18 O(p, ) 15 N – 151 keV test resonance - 18 O(p, ) 15 N 151 keV resonance used to commission the setup (E ≈ 3 MeV) -After the first tests collimators ("coronas") in front of the detectors have been added to shield from secondary electrons leakage: efficiency reduced from 10.6% to 1.4% but much cleaner spectrum -Experimental setup commissioned with and without collimators: both values are in agreement with literature
17 O(p,α) 14 N – 193 keV resonance - Clear peak on all working detectors: 1~2 alphas/s/det at ~300 keV - In excellent agreement with literature (nominal target enrichment) - Next step: 70 keV RESONANCE currently underway...
22 Ne(p, ) 23 Na measurement Many resonances never directly measured before are in the LUNA energy range Orders of magnitude uncertainty for novae, pre-explosion simmering in type Ia SNe Resonance at 178 keV directly observed for the first time during a preliminary test LUNA spectra at 178 keV resonance
22 Ne(p, ) 23 Na : gas target density profile measurement The target density without beam is deduced measuring the pressure and the temperature at different positions inside the target chamber Natural neon gas has been used: % 20 Ne 0.27 % 21 Ne 9.25 % 22 Ne target chamber with 6 flanges Temperature Profile Pressure Profile
22 Ne(p, ) 23 Na setup for resonances study Beam HPGe 90° HPGe 45° about 4 orders of magnitude background reduction compared to the unshielded detectors Lead shielding 70 x 70 x 95 cm Target chamber Copper shielding
Period 17 O(p, ) 14 N reaction 22 Ne(p, ) 23 Na reaction April – July 2013 resonance strength of the 193 keV resonance of the 17 O(p, ) 14 N reaction resonance strength of the 151 keV resonance of the 18 O(p, ) 15 N reaction SIMS and RBS on 17 O and 18 O targets (INFN Padova, INFN LNL) Study of the beam induced background and optimization of the signal-to-noise ratio for the 70 keV resonance of the 17 O(p, ) 14 N reaction Construction of the various parts of the experimental setup (INFN-Genova, INFN-Padova, HZDR) Installation at LUNA. Sept. – Dec Absolute measurement of the resonance strength of the 70 keV resonance of the 17 O(p, ) 14 N reaction Data taking, phase I (HPGe detectors) Jan.- Feb Change of the setup from phase I to phase II (BGO summing detector) March - April 2014 Data taking, phase II
Publications A. Caciolli et al., "Preparation and characterization of isotopically enriched Ta 2 O 5 targets for nuclear astrophysics studies" Eur. Phys. J. A (2012) 48:144 D. Scott et al., "First direct measurement of the 17 O(p, ) 18 F reaction cross- section at Gamow energies for classical novae" Phys. Rev. Lett. 109 (2012) O. Straniero et al., "Impact of a revised 25 Mg(p, ) 26 Al reaction rate on the operation of the Mg-Al cycle” APJ (2013) 763:100 M. Anders et al., "Neutron-induced background by an alpha-beam incident on a deuterium gas target and its implications for the study of the 2 H( , ) 6 Li reaction at LUNA" Eur. Phys. J. A (2013) 49:28 A. Di Leva et al., "Underground measurement of 17 O(p, ) 18 F for explosive H burning" to be submitted to PRC
Cost estimates For 2014 we can estimate to run the experiment without major investments except some maintenance for the LUNA 400 kV accelerator (20 keuro for motor generator and beam profile monitor). Therefore (in keuros): MISS : 90 CONS: 60 INV: 65 MAN: 80 TRA: 5 Totale : 300
Progetto premiale LUNA MV Sottomessa richiesta premiale 2012 (circa 3 milioni di euro) Preparata la documentazione necessaria (capitolato e norme contrattuali) per le richieste di aperture di procedimento di gara (fondi 2011) per: -preparazione sito -pannelli di HDPE (5%B) -carburo di Boro da inserire nel cemento per la schermatura -acceleratore
The Premium Project LUNA MV submitted to the Italian Research Ministry Year 1Year 2Year 3Year 4Year 5 Preparation of the site at LNGS (structures, plants, radiation shielding, safety systems). Definition of the technical parameters of the ion accelerator, start of the tender and issue of the supply order Design of beam lines for solid and gaseous targets. Purchase and construction of needed equipment and materials Design of detectors and data acquisition systems. Purchase and construction of the required hardware and software. Installation of the ion accelerator. Construction of the beam lines. Development of detection and data acquisition systems Set-up and calibration of the accelerator, beam lines, detectors. Running of test experiments. First experiment at the gas target beam line (measurement of the cross section of the 3 He(a,γ) 7 Be reaction over a wide energy range). First experiment at the solid target beam line (determination of the contamination of titanium nanoparticles)
Year 1Year 2Year 3Year 4Year 5 Site preparation (505) Ion accelerator (2000) Shielding (300) accelerator beam line (750) beam line to the gas target (320) beam line to the solid target (255) γ ray detectors (450) charged particle detectors (50) electronics and data acquisition (150) mobility (120) general expenses (450) Post Docs (150) PHDs (247,5) Mobility (120) Research grants (50) Mobility (120) Research grants (50) Mobility (120) Tot = , FINANCED! Year 1Year 2Year 3Year 4Year 5 Site preparation (505) Ion accelerator (2000) Shielding (300) accelerator beam line (750) beam line to the gas target (320) beam line to the solid target (255) γ ray detectors (450) charged particle detectors (50) electronics and data acquisition (150) mobility (120) general expenses (450) Post Docs (150) PHDs (247,5) Mobility (120) Research grants (50) Mobility (120) Research grants (50) Mobility (120) Tot = , SUBMITTED!
LUNA-MV Permissions The B-node rock walls contain water utilities of the Teramo aqueduct In 2012: a few meetings of the LUNA collaboration, LNGS management and LNGS technical division with the Teramo aqueduct,Teramo Health Institute (ASL Teramo) and "Istituto Superiore di Sanità" (main Health Institute) After the last joint meeting in Jan 2013 a document containing: a full description of the B-node site, of the LUNA MV accelerator and shielding, of the works necessary for the preparation of the site including technical specifications of all the materials which will be used, and the risk matrices sent to "Istituto Superiore di Sanità" on Feb 11 th, 2013 for an official answer to the question if the LUNA MV project and site preparation have an impact on the water quality The answer has been sent from ISS to Teramo Health Institute last week. LNGS will receive a joint document already agreed on by different local authorities
Progetto premiale LUNA MV Interferometro rimosso
LUNA MV shielding (last updates) Project of a new shielding solution (cheaper and more technically feasible): Doors substituted by a labyrinth + cover: the same neutron flux outside the LUNA-MV experimental hall is obtained Blocks removable in order to move bulky materials (e.g. accelerator tank) from outside to inside and vice versa. No (expensive) movement systems necessary
LUNA MV shielding (last updates) Materials optimized: Use of HDPE(5%B) instead of HDPE(5%Li) more common on the market "Sandwich" configuration for the labyrinth blocks : 10 cm of HDPE(5%B) + 70 cm concrete + 20 cm borated concrete REDUCTION OF COSTS OF ABOUT ONE HALF! HDPE (5%B) concrete Boron concrete
LUNA MV shielding
Workshop 60 participants mainly from Europe but also Asia and USA Status of LUNA MV Physics cases with round table on specific technical aspects Discussion on the collaboration structure Request for adhesions "adhesion should be intended as the willingness of the involved group to apply soon to the financing agency of the respective country...." So far: France: Marseille+Orsay+Ganil Poland:Szczecin USA:University of Connecticut Korea: to be better defined + single scientists Draft of collaboration agreement sent out Explorative Working packages next week first skype meeting
Progetto premiale LUNA MV Avanzamento del TDR con inclusione della progettazione delle due linee di trasporto del fascio: Progettate e costruite congiuntamente da INFN GE (P. Prati), LNGS (M. Junker) e NA (G. Imbriani). Non è escluso che altri gruppi (non italiani) possano contribuire Acquisita la disponibilità dei servizi tecnici di progettazione ed officina meccanica delle sezioni. La parte di slow-control relativa a gestione e monitoraggio dei sistemi da vuoto, sicurezze, interfacce/interlock con il controllo dell’acceleratore sarà integrata in un unico sistema I "working packages" esplorativi definiranno i requisiti essenziali (allegati tecnici al MoU futuro)
Solid target beamline Gas target beamline Solid target equipment Gas target equipment Quadropole Lens (QL) Faraday Cup (FC) Steerers (S) Pumping Station (PS) turbo pump + rotative Wobbler (W) Analizing Magnet (AM) FC HE FC21 S Accelerator equipment provided within accelerator tender PS1 PS2 PS1 QL AM FC11 S FC22 FC12 PS QL W GVHE GV22 GV12 Gate Valve (GV) Linee di trasporto del fascio per LUNA MV GV11
Stima dei costi 2 gate valves ~ 60 keuro 2 stazioni di pompaggio ad alto vuoto ~ 60 keuro 2 sistemi di movimentazione del fascio (steerers) ~ 20 keuro 4 Faraday cups ~ 40 k 2 lenti quadrupolari per la focalizzazione ~ 120 kEuro. Costo complessivo ~ 300 kEuro + windowless gas target (320 keuro) and solid target (50 keuro)
Time schedule
ERLUNA : bersagli solidi di 12 C Progetto "CARTA" presso i LNL (ERLUNA coordinato da Alba Formicola con partecipazione di V. Rigato (LNL) e A. Caciolli (PD)) Obiettivo: studiare diversi materiali (Cu, Ni, Ta) da utilizzare come supporto per impiantazione di 12 C determinando le impurezze di carbonio presenti Supporti trattati con diverse soluzioni acide presso il servizio di Chimica dei LNGS per rimuovere i residui della lavorazione meccanica ed i primi strati superficiali Ta Cu Ni
ERLUNA : bersagli solidi di 12 C Finora: Preparazione del canale di misura per ottenere nella camera di scattering p = mbar (trappola di LN 2 direttamente sui campioni). Allineamento e test con movimentazione dei campioni in vuoto (marzo-maggio 2013) Fascio di deuterio da 1.2MeV per valutare le contaminazioni presenti ed il rate di "carbon build-up" dovuto al fascio tramite Rutherford back scattering (3 rivelatori al Si: 2 a 150° e uno a 170°) (giugno 2013) Studio di bersagli (stabilità, purezza e dose) impiantati con 12 C presso l’impiantatore di SIDONIE (Orsay-Francia). Fasci di p e per lo studio di risonanze note con rivelatori LaBr 3 in "close geometry" (luglio 2013) Standard di C/Ta 12 C
THE LUNA COLLABORATION Laboratori Nazionali del Gran Sasso A.Formicola, M.Junker Helmoltz-Zentrum Dresden-Rossendorf, Germany M. Anders, D. Bemmerer, Z. Elekes INFN, Padova, Italy C. Broggini, A. Caciolli, R. De Palo, R. Menegazzo, C. Rossi Alvarez INFN, Roma 1, Italy C. Gustavino Institute of Nuclear Research (ATOMKI), Debrecen, Hungary Zs.Fülöp, Gy. Gyurky, E.Somorjai, T. Szucs Osservatorio Astronomico di Collurania, Teramo, and INFN, Napoli, Italy O. Straniero Ruhr-Universität Bochum, Bochum, Germany C.Rolfs, F.Strieder, H.P.Trautvetter Università di Genova and INFN, Genova, Italy F. Cavanna, P.Corvisiero, P.Prati Università di Milano and INFN, Milano, Italy A.Guglielmetti, D. Trezzi Università di Napoli ''Federico II'', and INFN, Napoli, Italy A.Di Leva, G.Imbriani Università di Torino and INFN, Torino, Italy G.Gervino University of Edinburgh M. Aliotta, C. Bruno, T. Davinson, D. Scott