Algoritmi Avanzati a.a.2011/2012 Prof.ssa Rossella Petreschi L’ausilio delle occorrenze Circuiti di ordinamento Lezione n°5.

Slides:



Advertisements
Presentazioni simili
Algoritmi Paralleli e Distribuiti a.a. 2008/09 Lezione del 31/03/2009 Prof. ssa ROSSELLA PETRESCHI a cura del Dott. SAVERIO CAMINITI.
Advertisements

Algoritmi Paralleli e Distribuiti a.a. 2008/09 Lezione del 22/05/2009 Prof. ssa ROSSELLA PETRESCHI a cura del Dott. SAVERIO CAMINITI.
Algoritmi Paralleli e Distribuiti a.a. 2008/09 Lezione del 12/05/2009 Prof. ssa ROSSELLA PETRESCHI a cura del Dott. SAVERIO CAMINITI.
Algoritmi Paralleli e Distribuiti a.a. 2008/09 Lezione del 19/05/2009 Prof. ssa ROSSELLA PETRESCHI a cura del Dott. SAVERIO CAMINITI.
Algoritmi Paralleli e Distribuiti a.a. 2008/09 Lezione del 15/05/2009 Prof. ssa ROSSELLA PETRESCHI a cura del Dott. SAVERIO CAMINITI.
Algoritmi Paralleli e Distribuiti a.a. 2008/09 Lezione del 08/05/2009 Prof. ssa ROSSELLA PETRESCHI a cura del Dott. SAVERIO CAMINITI.
Algoritmi Avanzati a.a.2014/2015 Prof.ssa Rossella Petreschi Lezione n°9.
Prog21 Alberi binari (radicati e ordinati) Il figlio destro della radice La radice Il figlio sinistro della radice Il padre del nodo 5.
Huffman Canonico: approfondimento. Come abbiamo visto, Huffman canonico ci permette di ottenere una decompressione più veloce e con un uso più efficiente.
Prof.ssa Rossella Petreschi Lezione del 3/12/2013 del Corso di Algoritmica GRAFI e PLANARITA’ Lezione n°15.
Prof.ssa Rossella Petreschi Lezione del 29 /10/2014 del Corso di Algoritmica Lezione n°8.
Algoritmi Avanzati a.a.2013/2014 Prof.ssa Rossella Petreschi Somme prefisse Lezione n°2.
Algoritmi e Strutture dati a.a.2010/2011 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2013/2014 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2014/2015 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2014/2015 Prof.ssa Rossella Petreschi
Lezione n°10 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2014/2015 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2015/2016 Prof.ssa Rossella Petreschi
Analisi di sequenze di operazioni Union-Find
Algoritmi Avanzati a.a.2014/2015 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2010/2011 Prof.ssa Rossella Petreschi
Lezione n°9 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2014/2015 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2013/2014 Prof.ssa Rossella Petreschi
Alberi binari Definizione Sottoalberi Padre, figli
Algoritmi Avanzati Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2011/2012 Prof.ssa Rossella Petreschi
Rappresentazione di alberi
Algoritmi Avanzati a.a.2010/2011 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2011/2012 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2014/2015 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2015/2016 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2013/2014 Prof.ssa Rossella Petreschi
La gestione degli insiemi disgiunti
Algoritmi Avanzati a.a.2011/2012 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2013/2014 Prof.ssa Rossella Petreschi
Algoritmi Avanzati Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2011/2012 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2013/2014 Prof.ssa Rossella Petreschi
Algoritmi Avanzati Prof.ssa Rossella Petreschi
Algoritmi Avanzati Prof.ssa Rossella Petreschi
Algoritmi Avanzati Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2010/2011 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2014/2015 Prof.ssa Rossella Petreschi
Lezione n°4 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2010/2011 Prof.ssa Rossella Petreschi
Paths, tree and flowers Lezione n°14
K4 è planare? E K3,3 e K5 sono planari? Sì!
Lezione n°11 Prof.ssa Rossella Petreschi
Lezione n°12 Prof.ssa Rossella Petreschi
ABBINAMENTO Lezione n°13
Algoritmi e Strutture dati a.a.2010/2011 Prof.ssa Rossella Petreschi
Algoritmi per il flusso nelle reti
Lezione n°6 Prof.ssa Rossella Petreschi
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati
Algoritmi Avanzati a.a.2011/2012 Prof.ssa Rossella Petreschi
Lezione n°14 Prof.ssa Rossella Petreschi
Algoritmi Avanzati Prof.ssa Rossella Petreschi
Automi e stringhe Lezione n°24 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a. 2010/11
Alberi di ricerca Lezione n°4
Esercizio Dato un albero binario, definiamo altezza minimale di un nodo v la minima distanza di v da una delle foglie del suo sottoalbero, definiamo invece.
Algoritmi Avanzati a.a.2010/2011 Prof.ssa Rossella Petreschi
Algoritmi e Strutture dati a.a.2010/2011 Prof.ssa Rossella Petreschi
Lezione n°7 Splay-Trees e Heaps Prof.ssa Rossella Petreschi
Algoritmi e Strutture dati a.a.2010/2011 Prof.ssa Rossella Petreschi
Algoritmi e Strutture dati a.a.2010/2011 Prof.ssa Rossella Petreschi
Unione per ranghi compressi
Transcript della presentazione:

Algoritmi Avanzati a.a.2011/2012 Prof.ssa Rossella Petreschi L’ausilio delle occorrenze Circuiti di ordinamento Lezione n°5

Occorrenza sinistra e destra Anche per individuare la prima e l’ultima occorrenza di un nodo nel CDE di un albero radicato, sfruttiamo il vettore delle somme prefisse S calcolato nello stesso modo del calcolo dei livelli dei nodi. Per ogni arco (u,v) nel CDE calcoleremo: left(e) = 1 sse S(e.pred) < S(e) right(e) = 1 sse S(e.next) < S(e) Per ogni nodo v nel CDE calcoleremo: left(v) = indice dell’unico arco con left(u,v) = 1 right(v) = indice dell’unico arco con right(u,v) = 1 Notare: left(u,v) = right(u,v) = 1 sse v è una foglia. left(r)= 0 AA

Esempio left e right Consideriamo l’albero in figura e il suo CDE,radicato nel nodo h h e h c b c i a d a i g c f c h I valori left e right associati all’arco (u,v) identificano rispettivamente la prima e l’ultima visita del nodo v nel Cammino di Eulero. CDEh,ee,hh,cc,bb,cc,ii,aa,dd,aa,ii,gg,ii,cc,ff,cc,h S left right c h g e f b i da AA

Visita inorder La visita inorder (FS,R,FD) è definita soltanto su alberi binari, perché è necessario poter distinguere tra figlio sinistro e figlio destro di ogni nodo. Nelle nostre strutture dati non abbiamo tale informazione quindi assumeremo che l’albero abbia la proprietà 0/2 (ciascun nodo ha esattamente 0 o 2 figli). Per ottenere la numerazione inorder ciascuna foglia viene conteggiata in corrispondenza della sua unica occorrenza (left = right = 1) nel CDE, mentre i nodi interni vengono conteggiati nell’occorrenza intermedia tra il primo ed il secondo figlio (left = right = 0). Si da valore 1 a tutti gli archi tali che left = right e si eseguono le somme prefisse S.  v inorder(v) = S(u,v) dove (u,v) è l’arco in cui v è stato conteggiato: left(u,v) = right(u,v). AA

vabcdefg inorder Esempio di visita inorder CDE g,aa,gg,cc,bb,ff,bb,dd,bb,cc,ee,cc,g left right S c g a be df AA

LCA La computazione del minimo antecedente comune (lca) di ogni nodo si basa sulle seguenti osservazioni: 1. u è antecedente di v sse left(u) < left(v) < right(u) 2. u e v sono confrontabili (nessuno è antecedente dell’altro) sse right(v) < left(u) oppure right(u) < left(v) 3.se u e v sono confrontabili, lca(u,v) è il vertice di livello più basso compreso tra right(u) e left(v) Esempio: CDE h,ee,hh,cc,bb,cc,ii,aa,dd,aa,ii,gg,ii,cc,ff,cc,h S liv left right lca(a,f)=c right(a) left(f) c h g e f b i da AA

Come ordinare nel Parallelo Utilizziamo il comparatore, ossia un circuito di confronto con due ingressi e due uscite il cui valore è la coppia di valori in input ordinati in modo ascendente. I circuiti formati da comparatori, se opportunamente combinati, costituiscono un'architettura in grado di ordinare n valori di input. x y min(x,y) max(x,y)

Insertion Sort Due architetture per implementare l'insertion sort (tra 8 valori in input): Questa macchina utilizza una versione seriale dell'algoritmo di complessità O(n 2 ) (indicata dalla profondità del circuito, ossia il numero di porte che vengono attraversate in tempi differenti). È possibile ottenere una complessità O(n) ottimizzando lo scheduling dei comparatori e parallelizzando l'algoritmo.

Sulla monotonicità Se un circuito di ordinamento trasforma la sequenza di input a = (a 1, a 2, …, a n ) nella sequenza di output b = (b 1, b 2, …, b n ), allora per ogni funzione monotona crescente f, il circuito trasforma la sequenza di input f(a) = (f(a 1 ), f(a 2 ), …, f(a n )) nella sequenza di output f(b)=(f(b 1 ), f(b 2 ), …, f(b n )). Tale proprietà è facilmente verificata da un singolo comparatore e per induzione la si può provare per un intero circuito di ordinamento. x y min(x,y) max(x,y) f(x)f(x) f(y)f(y) min(f(x), f(y))) = f(min(x,y)) max(f(x), f(y))) = f(max(x,y))

Principio 0/1 Teorema (principio 0/1): se un circuito combinatorio di ordinamento lavora correttamente per qualunque input costruito sull'alfabeto {0,1} allora lavora correttamente per qualunque input costruito su di un qualsiasi alfabeto finito A. Dim: supponiamo per assurdo che il circuito ordini tutte le sequenze costruite sull'alfabeto {0,1} correttamente, ma che esista una sequenza di input di numeri arbitrari a = (a 1, a 2, …, a n ) contenente elementi a i e a j tali che a i < a j mentre il circuito pone a j prima di a i nella sequenza di output. Definiamo una funzione f monotona crescente come: f(x) = 0 se x <= a i f(x) = 1 se x > a i dal lemma precedente segue che il circuito sistema f(a j ) prima di f(a i ) nella sequenza di output quando f(a) è l'input. Ma poiché f(a j ) = 1 mentre f(a i ) = 0, neghiamo l'ipotesi giungendo ad un assurdo.

Sequenze bitoniche Una Sequenza Bitonica è una sequenza che può essere divisa in due sottosequenze monotone, una crescente e l'altra decrescente o viceversa. Sono bitoniche le due sequenze: m(S) = (min{s 1,s n+1 }, min{s 2,s n+2 }, …, min{s n,s 2n }) M(S) = (max{s 1,s n+1 }, max{s 2,s n+2 }, …, max{s n,s 2n }) ottenute dalla sequenza bitonica S = s 1, s 2, …, s 2n Sfruttando la definizione di m(S) ed M(S) e le relative proprietà si può ottenere una definizione ricorsiva per le sequenze bitoniche che ci permette di realizzare un primo algoritmo di ordinamento che opera ricorsivamente secondo lo schema: S = S 1 = m(S) = S 2 = M(S) = S 3 = m(S 1 ) = 1 3 S 4 = M(S 1 ) = 5 4 S 5 = m(S 2 ) = 6 5 S 6 = M(S 2 ) = Complessità O(log(n)).

Sequenze pulite Una sequenza binaria si dice pulita se è composta interamente da 0 o da 1. Se S è bitonica almeno una delle due sottosequenze bitoniche m(S) e M(S) è pulita (diretta conseguenza del fatto che la cardinalità di {0,1} è due). In figura è presentato un circuito di ordinamento, di profondità logaritmica, per sequenze 0/1 bitoniche (ad ogni passo rendiamo pulita metà della sequenza)

Circuito di fusione Il circuito di fusione fonde due sequenze ordinate costruite sullo stesso alfabeto sfruttando il fatto che, date due sequenze ordinate entrambe crescenti (o decrescenti) x e y, la sequenza che si ottiene concatenando x con z=“y rovesciata” è bitonica (l’inversione della stringa y si realizza semplicemente variando le connessioni). La profondità del circuito è logaritmica e il numero di comparatori ad ogni passo è n/

Circuito di ordinamento In figura è riportato un circuito di ordinamento che realizza l’ordinamento connettendo iterativamente diversi circuiti di fusione (la base di questa costruzione sta nel fatto che ogni sequenza di due elementi è bitonica). Poiché concateniamo un numero logaritmico di circuiti di fusione, otteniamo una profondità del circuito O(log 2 n)

Applicando il teorema di Brent Il circuito di ordinamento, O, è un circuito combinatorico di profondità d = O(log 2 n), di dimensione pari al numero di comparatori c = O(nlog 2 n), fan in e fan out limitati. Per il Teorema di Brent, l’algoritmo di ordinamento che lavora su O può essere simulato da una algoritmo che lavora su una PRAM EREW con p processori in tempo O(c / p + d), ovvero O((n log 2 n) / p + log 2 n). Quando p = O(n) si ha che la complessità temporale dell'ordinamento su una PRAM EREW è O(log 2 n) e il costo O(n log 2 n).