BIG BANG La teoria del Big Bang è stata dedotta dalle equazioni della relatività generale, risolvendole in condizioni particolari atte a semplificare il problema, ma di natura ipotetica. La più importante di queste è l'ipotesi di omogeneità e l'isotropia dell'Universo, nota come principio cosmologico. Essa generalizza all'intero universo il principio copernicano. La teoria del Big Bang risultò subito in accordo con la nuova concezione della struttura dell'universo che proprio negli stessi decenni stava emergendo dall'osservazione astronomica delle nebulose. Nel 1912 Vesto Slipher aveva misurato il primo spostamento verso il rosso, detto "effetto redshift", di una "nebulosa a spirale" e aveva scoperto che la maggior parte di esse si stava allontanando dalla Terra. Egli non colse l'implicazione cosmologica della sua scoperta, infatti in quel periodo erano in corso accesi dibattiti sul fatto se queste nebulose fossero o non fossero degli "universi isola" esterni alla Via Lattea. Dieci anni dopo Alexander Friedmann, matematico e cosmologo russo, ricavò le omonime equazioni dalle equazioni della relatività generale di Albert Einstein, mostrando che l'universo doveva essere in espansione, in contrasto con il modello di universo statico sostenuto da Einstein. Egli però non comprese che la sua teoria implicava lo spostamento verso il rosso della luce stellare e il suo contributo matematico fu completamente ignorato, sia perché privo di conferme astronomiche sia perché poco noto nel mondo anglosassone, essendo scritto in tedesco. A partire dal 1924 Edwin Hubble, utilizzando il telescopio Hooker dell'Osservatorio di Monte Wilson, mise a punto una serie di indicatori di distanza che sono i precursori dell'attuale scala delle distanze cosmiche. Questo gli permise di calcolare la distanza di nebulose a spirale il cui redshift era già stato misurato, soprattutto da Slipher, e di mostrare che quei sistemi si trovavano ad enormi distanze ed erano in realtà altre galassie. Nel 1927 Georges Lemaître, fisico e sacerdote cattolico belga, sviluppò le equazioni del Big Bang in modo indipendente da Friedmann e ipotizzò che l'allontanamento delle nebulose fosse dovuto all'espansione del cosmo. Egli infatti osservò che la proporzionalità fra distanza e spostamento spettrale, oggi nota come legge di Hubble, era parte integrante della teoria ed era confermata dai dati di Slipher e di Hubble.[ Nel 1931 Lemaître andò oltre e suggerì che l'evidente espansione del cosmo necessita di una sua contrazione andando indietro nel tempo, continuando fino a quando esso non si possa più contrarre ulteriormente, concentrando tutta la massa dell'universo in un singolo punto, "l'atomo primitivo", prima del quale lo spazio e il tempo non esistono. In quell'istante la struttura spazio-temporale doveva ancora comparire. Nel 1929 Hubble pubblicò la relazione tra la distanza di una galassia e la sua velocità di allontanamento formulando quella che oggi è conosciuta come la legge di Hubble. Rappresentazione artistica del satellite WMAP, che sta raccogliendo dati per aiutare gli scienziati nella comprensione del Big Bang. Durante gli anni trenta furono proposte altre idee, note come cosmologie non standard, per spiegare le osservazioni di Hubble, come per esempio il modello di Milne, l'universo oscillante, ideata originariamente da Friedmann e supportato da Einstein e da Richard Tolman,e l'ipotesi della luce stanca di Fritz Zwicky. Dopo la seconda guerra mondiale emersero due differenti teorie cosmologiche: La prima era la teoria dello stato stazionario di Fred Hoyle, in base alla quale nuova materia doveva essere creata per compensare l'espansione. In questo modello l'universo è approssimativamente lo stesso in ogni istante di tempo. L'altra è la teoria del Big Bang di Georges Lemaître, supportata e sviluppata da George Gamow che nel 1948 assieme a Ralph Alpher introdusse il concetto di nucleosintesi.Questa pubblicazione segnò l'inizio della cosmologia del Big Bang come scienza quantitativa. Sempre Alpher, con Robert Herman, ipotizzò nello stesso anno l'esistenza di una radiazione cosmica di fondo. Il termine "Big Bang" fu coniato durante una trasmissione radiofonica della BBC Radio del marzo 1949 da Fred Hoyle in senso dispregiativo, riferendosi ad esso come "questa idea del grosso botto". Successivamente Hoyle diede un valido contributo al tentativo di comprendere il percorso nucleare di formazione degli elementi più pesanti a partire da quelli più leggeri. Inizialmente la comunità scientifica si divise tra queste due teorie; in seguito, grazie al maggior numero di prove sperimentali, fu la seconda teoria ad essere più accettata. La scoperta e la conferma dell'esistenza della radiazione cosmica di fondo a microonde nel 1964 indicarono chiaramente il Big Bang come la migliore teoria sull'origine e sull'evoluzione dell'universo. Le conoscenze in ambito cosmologico includono la comprensione di come le galassie si siano formate nel contesto del Big Bang, la comprensione della fisica dell'universo negli istanti immediatamente successivi alla sua creazione e la conciliazione delle osservazioni con la teoria di base. Importanti passi avanti nella teoria del Big Bang sono stati fatti dalla fine degli anni novanta a seguito di importanti progressi nella tecnologia dei telescopi, nonché dall'analisi di un gran numero di dati provenienti da satelliti come COBE,il telescopio spaziale Hubble e il WMAP. Questo ha fornito ai cosmologi misure abbastanza precise di molti dei parametri riguardanti il modello del Big Bang e ha permesso di intuire che si sta avendo un'accelerazione dell'espansione dell'universo. Dopo il tramonto della teoria dello stato stazionario quasi nessun scienziato nega il Big Bang come espansione dell'universo, anche se molti ne forniscono interpretazioni diverse (vedi Formulazioni avanzate della teoria).
Nei giorni successivi al Big Bang, l'universo era in una condizione di equilibrio termodinamico, con fotoni che erano continuamente emessi ed assorbiti, dando alla radiazione una forma simile allo spettro di un corpo nero. Mentre si espandeva, l'universo si raffreddava fino a raggiungere una temperatura che non permetteva più la creazione e la distruzione dei fotoni. La temperatura era però ancora sufficientemente alta da non consentire che gli elettroni si legassero con i nuclei per formare atomi ed i fotoni erano costantemente riflessi da questi elettroni liberi attraverso un processo chiamato scattering Thomson. A causa di questo ripetuto scattering, l'universo era inizialmente "opaco". Quando la temperatura scese a qualche migliaio di kelvin, gli elettroni liberi e i nuclei cominciarono a combinarsi tra loro per formare gli atomi, un processo conosciuto come ricombinazione. Poiché la diffusione dei fotoni è meno frequente da atomi neutri, la radiazione si disaccoppiò dalla materia quando tutti gli elettroni si ricombinarono (all'incirca 379 000 anni dopo il Big Bang). Questi fotoni formano la radiazione cosmica di fondo, che è possibile rilevare oggi e il modello osservato delle fluttuazioni di tale radiazione fornisce un'immagine del nostro universo in quell'epoca iniziale. L'energia dei fotoni fu successivamente spostata verso il rosso dall'espansione dell'universo, il che conservò lo spettro di corpo nero, ma causò l'abbassamento della sua temperatura, spostando i fotoni nella regione delle microonde all'interno dello spettro elettromagnetico. Si ritiene che sia possibile osservare la radiazione in ogni punto dell'universo e che essa provenga da tutte le direzioni con (all'incirca) la stessa intensità. Nel 1964 Arno Penzias e Robert Wilson scoprirono casualmente la radiazione cosmica di fondo, mentre conducevano osservazioni diagnostiche usando un nuovo ricevitore di microonde (di proprietà dei Bell Laboratories). La loro scoperta fornì la sostanziale conferma delle previsioni sulla radiazione (essa era isotropica e confrontabile con uno spettro di corpo nero con una temperatura di circa 3 K) e permise di avere una valida prova a favore dell'ipotesi del Big Bang. Penzias e Wilson ricevettero il premio Nobel per la fisica nel 1978 grazie a questa scoperta. Nel 1989 la NASA lanciò il satellite COBE (acronimo di COsmic Background Explorer) e le prime conclusioni, fornite nel 1990, erano consistenti con le previsioni della teoria del Big Bang per quanto riguarda la radiazione cosmica di fondo. COBE trovò una temperatura residua di 2,726 K e nel 1992 individuò per la prima volta le fluttuazioni (anisotropie) della radiazione, con un'incertezza di una parte su 105.John C. Mather e George Smoot ricevettero il premio Nobel nel 2006 per questo lavoro. Durante il decennio successivo, queste anisotropie furono studiate ulteriormente da un gran numero di esperimenti (sia a terra, sia attraverso palloni sonda). Nel 2000-2001 molti esperimenti (tra cui il più importante fu boomerang), misurando la larghezza angolare tipica delle anisotropie, trovarono che l'universo ha una geometria quasi piatta.[ All'inizio del 2003, furono pubblicati i primi risultati del satellite WMAP, ottenendo quelli che erano al tempo i più accurati valori di alcuni parametri cosmologici. Il satellite inoltre escluse numerosi modelli inflazionari, benché i risultati fossero in generale coerenti con la teoria dell'inflazione e confermò che un mare di neutrini cosmici permea l'universo, una prova evidente che le prime stelle impiegarono più di mezzo miliardo di anni per creare una nebbia cosmica. Un altro satellite simile a WMAP, il Planck Surveyor, che è stato lanciato il 14 maggio 2009, fornirà misure ancora più precise sull'anisotropia della radiazione di fondo. Sono previsti inoltre esperimenti a terra e con palloni sonda. La radiazione di fondo è incredibilmente omogenea e questo presentò un problema nei modelli di espansione convenzionali, perché ciò avrebbe implicato che i fotoni provenienti da direzioni opposte siano venuti da regioni che non sono mai state in contatto le une con le altre. La spiegazione oggi prevalente per questo equilibrio su vasta scala è che l'universo abbia avuto un breve periodo con una espansione esponenziale, conosciuta come inflazione. Questo avrebbe avuto l'effetto di allontanare regioni che erano in equilibrio termodinamico, cosicché tutto l'universo osservabile proviene da una regione con lo stesso equilibrio
Osservazioni dettagliate sulla morfologia e distribuzione delle galassie e dei quasar forniscono una prova convincente della teoria del Big Bang. La combinazione delle osservazioni e delle teorie suggerisce che i primi quasar e le prime galassie si formarono circa un miliardo di anni dopo il Big Bang e da allora si formarono le strutture più grandi, come gli ammassi e i superammassi galattici. Le popolazioni stellari si sono evolute nel tempo, perciò le galassie più distanti (che vengono osservate così come erano nel giovane universo) appaiono molto diverse dalle galassie a noi più vicine, in quanto queste ultime sono osservate in uno stato più recente. Inoltre, le galassie che si sono formate in periodi relativamente recenti appaiono decisamente diverse rispetto a quelle che si formarono ad una distanza simile, ma subito dopo il Big Bang. Queste osservazioni sono portate come prove contro il modello dello stato stazionario. Le osservazioni della formazione stellare, della distribuzione di galassie e quasar e le strutture a larga scala sono in accordo con le previsioni del Big Bang (per quel che riguarda la formazione di queste strutture nell'universo) e stanno contribuendo a completare tutti i dettagli della teoria