MICE-2020 (INFN MIB, Na, PV, Rm3) M. Bonesini INFN, Sezione di Milano Bicocca Milano Italy
M. Bonesini - commissione V Ferrara Motivazioni Lo scopo di MICE e’: Progettare, costruire e far funzionare una sezione realistica di un muon cooling channel Misurare le sue prestazioni per diversi settings di emittanza e momento del fascio I risultati servono per ottimizzare la costruzione di una Neutrino Factory o un Muon Collider 30/09/2014 M. Bonesini - commissione V Ferrara
Muon ionization cooling Stochastic cooling is too slow. A novel method for + and - is needed: ionization cooling principle reality (simplified) reduce pt and pl heating Build a section of cooling channel long enough to provide measurable cooling (10% ) and short enough to be affordable and flexible Wish to measure this change to 1% Requires measurement of emittance of beams into and out of cooling channel to 0.1% ! Cannot be done with conventional beam monitoring device Instead perform a single particle experiment: High precision measurement of each track (x,y,z,px,py,pz,t,E) Build up a virtual bunch offline Analyse effect of cooling channel on many different bunches Study cooling channels parameters over a range of initial beam momenta and emittances increase pl 30/09/2014 M. Bonesini - commissione V Ferrara
MICE setup: cooling + diagnostics Cools and measures about 100 muons/s 30/09/2014 M. Bonesini - commissione V Ferrara
MICE cooling channel Minimize heating term: High gradient reacceleration 10% reduction of muon emittance for 200 MeV muons requires ~20MV RF Challenge: integration of these elements in the most compact and economic way Minimize heating term: Absorber with large X0 SC solenoid focusing for small T 3 Liquid Hydrogen absorbers 8 cavities 201MHz RFs, 8MV/m 5T SC solenoids IEEE 2004 - Roma
Muon Emittance measurement G4MICE simulation of Muon traversing MICE Each spectrometer measures 6 parameters per particle x y t x’ = dx/dz = Px/Pz y’ = dy/dz = Py/Pz t’ =dt/dz =E/Pz Determines, for an ensemble (sample) of N particles, the moments: Averages <x> <y> etc… Second moments: variance(x) x2 = < x2 - <x>2 > etc… covariance(x) xy = < x.y - <x><y> > Covariance matrix M = Getting at e.g. x’t’ is essentially impossible with multiparticle bunch measurements Compare in with out Evaluate emittance with: 30/09/2014 M. Bonesini - commissione V Ferrara
Storia partecipazione INFN in MICE Si e’ svolta prima in NTA (come NTA-MICE) e poi in Gr V come MICE ed e’ regolata da un MOU firmato fra INFN e STFC a fine 2012 Finanziamenti esterni: ~ 200KE dal RAL all’ INFN nel 2007, attualmente stiamo cercando finanziamenti EU (proposal ETN MATiN con capofila INFN, rimandato al secondo round di gennaio 2015) Attivita’: principalmente rivolta ai rivelatori che instrumentano il fascio di MICE (sistema TOF+KL) MICE-2020 punta a capitalizzare gli investimenti fatti dall’ INFN negli ultimi anni ed ottenere i risultati relativi di Fisica degli acceleratori (STEP IV-STEP V nel 2015-2017) 30/09/2014 M. Bonesini - commissione V Ferrara
MICE installation status Target Beamline PID detectors SSC + trackers AFC Completo per lo STEP IV 30/09/2014 M. Bonesini - commissione V Ferrara
Compression of MICE Schedule STEP V semplificato 30/09/2014 M. Bonesini - commissione V Ferrara
M. Bonesini - commissione V Ferrara MICE Beamline ISIS 800 MeV proton synchrotron at RAL Titanium target, grazing ISIS beam p captured by quad triplet and momentum selected by dipole Followed by 5T decay superconducting solenoid (5 m long): contain p and decay m Second dipole momentum select muons 30/09/2014 M. Bonesini - commissione V Ferrara
M. Bonesini - commissione V Ferrara MICE Target Titanium target (UK) dipped into ISIS beam at end of 20 ms beam cycle at ~0.4 Hz This requires fine control of the position of the target as well as high acceleration (~80 g) Original target ran 190K dips into beam, but failed december 2008 (Tip melted) A simplified design is being constructed Understand target operation Beam loss Dip depth and timing How affect ISIS Number of particles in MICE beamline 30/09/2014 M. Bonesini - commissione V Ferrara
PID beam instrumentation 30/09/2014 M. Bonesini - commissione V Ferrara
Beamline Commissioning The beamline has been operated over a range of momenta, producing positrons, pions and protons TOF0 and KL detectors have been used to record beam profiles Time of flight have been used to identify pions and protons Pubblicato su JINST 300 MeV/c pion beam profile in TOF0. Left : 2D beam profile 30/09/2014 M. Bonesini - commissione V Ferrara
Sviluppato un nuovo metodo per misurare l’ emittanza con solo I TOF Pubblicato su Eur. J. Phys. C 30/09/2014 M. Bonesini - commissione V Ferrara
M. Bonesini - commissione V Ferrara I trackers di MICE 30/09/2014 M. Bonesini - commissione V Ferrara
Una visione piu’dettagliata dei solenoidi 30/09/2014 M. Bonesini - commissione V Ferrara
LO STEP IV: prima fase di MICE 2020 Tutto l’hardware e’ installato nella MICE Hall Run finale: da Marzo 2015, dopo il cambio del moderatore di ISIS 30/09/2014 M. Bonesini - commissione V Ferrara
Lo STEP V semplificato : fase finale di MICE 2020 Il DOE ha chiesto una compressione della schedula di MICE, con fine entro il 2017. Cio’ ha portato a disegnare una fase V semplificata (dimostrazione del muon cooling con riaccelerazione) . La transizione dallo STEP IV allo STEP V richiede l’aggiunta di due moduli RF (gia’ disponibili a FNAL) ed un altro AFC (gia’ disponibile al RAL) Questa configurazione, rispetto a quella originale con RFCC dello US Study 2, corrisponde di piu’ agli ultimi studi IDS 30/09/2014 M. Bonesini - commissione V Ferrara
M. Bonesini - commissione V Ferrara Stato Cavita’ RF 30/09/2014 M. Bonesini - commissione V Ferrara
M. Bonesini - commissione V Ferrara RF power train 30/09/2014 M. Bonesini - commissione V Ferrara
M. Bonesini - commissione V Ferrara Conclusioni MICE 2020 ha realisticamente la possibilita’ di concludere il programma di studio del muon cooling in un tempo limitato (2015-2017) l’hardware in pratica non necessita di ulteriori completamenti da parte US e permette di capitalizzare sull’investimento (anche umano) INFN degli ultimi anni 30/09/2014 M. Bonesini - commissione V Ferrara
M. Bonesini - commissione V Ferrara Backup slides 30/09/2014 M. Bonesini - commissione V Ferrara
M. Bonesini - commissione V Ferrara Sensitivity of Nufact X 5 0.10 10 2.50 50 130 M. Mezzetto present limit from the CHOOZ experiment 0.75 MW JHF to super Kamiokande with an off-axis narrow-band beam, Superbeam: 4 MW CERN-SPL to a 400 kt water Cerenkov@ Fréjus (J-PARC phase II similar) Neutrino Factory with 40 kton large magnetic detector. 30/09/2014 M. Bonesini - commissione V Ferrara IEEE 2004 - Roma
International Scoping Study baseline Neutrino Factory International Scoping Study baseline Proton Drive (4 MW, 2 ns bunch) Target, Capture, Drift (π→μ) & Phase Rotation Hg Jet 200 MHz train Cooling 30 pmm ( ^ ) 150 pmm ( L ) Acceleration 103 MeV ® 25 GeV Decay rings (baseline is race-track design): 7500 km L 4000 km L ISS Accelerator WG report: RAL-2007-023 30/09/2014 M. Bonesini - commissione V Ferrara 24 24
beams: conventional and nufact beams Problem in conventional n beams: a lot of minority components (beam understanding) Following muon collider studies, accelerated muons are ALSO an intense source of “high energy” Crucial features: high intensity (x 100 conventional beams) known beam composition (50% 50% e) Possibility to have an intense e beam Essential detector capabilities: detect and determine their sign WANF (conventional n beam at SPS) Nufact beam 30/09/2014 M. Bonesini - commissione V Ferrara
IDS Study – Physics Reach 3s contours shown ISS Physics Group Report: arXiv:0710.4947v2 Sin22q13 Hierarchy d CP SPL: 4MW, 1MT H2OC, 130 km BL T2HK: 4 MW, 1MT H2OC, 295 km BL WBB: 2MW, 1MT H2OC, 1300 km BL NF: 4MW, 100KT MIND, 4000 & 7500 BL BB350: g=350, 1MT H2OC, 730 km BL 30/09/2014 M. Bonesini - commissione V Ferrara 26
M. Bonesini - commissione V Ferrara Neutrino Factory R&D High power (MW) proton driver Target and collection (HARP/MERIT) Maximize + and - production Sustain high power (MW driver) Optimize pion capture Muon cooling (MICE) Reduce +/- phase space to capture as many muons as possible in an accelerator Muon acceleration Has to be fast, because muons are short-lived ! (RLA, FFAG, …) 30/09/2014 M. Bonesini - commissione V Ferrara
STEP V nella configurazione prevista con RFCC 30/09/2014 M. Bonesini - commissione V Ferrara
MICE STEP V semplificato 30/09/2014 M. Bonesini - commissione V Ferrara
M. Bonesini - commissione V Ferrara RF phasing with muons 30/09/2014 M. Bonesini - commissione V Ferrara
M. Bonesini - commissione V Ferrara RF phasing with muons 30/09/2014 M. Bonesini - commissione V Ferrara