Alberi binari Definizione Sottoalberi Padre, figli Foglie, nodi interni e percorsi Profondità e altezza Albero binario pieno e completo
Albero binario Un albero binario è un albero dove ogni nodo ha al massimo due figli. Tutti i nodi tranne la radice ha un nodo padre. Le foglie dell’albero non hanno figli.
Sottoalberi radice Sottoalbero sinistro Sottoalbero destro
Radice del sottoalbero Radice del sottoalbero Sottoalberi radice Radice del sottoalbero sinistro Radice del sottoalbero destro Sottoalbero sinistro Sottoalbero destro Sottoalbero sinistro Sottoalbero destro
Padre e figli i è padre di k e j j e k sono i due figli di i radice Arco tra i e j i Figli di i k j i è padre di k e j j e k sono i due figli di i (i,j) è l’arco che unisce i e j
Foglie, nodi interni e percorsi In nodo di un albero binario si dice nodo foglia (o solo foglia) se non ha figli (cioè se entrambi i sottoalberi di cui è radice sono vuoti). Un nodo si dice nodo interno se ha almeno un figlio. Un percorso dal nodo i al nodo j è la sequenza di archi che devono essere attraversati per raggiungere il nodo j dal nodo i.
Foglie, nodi interni e percorsi radice Percorso tra i e j i Nodi interni j Foglie
Profondità e altezza In un albero binario la profondità di un nodo è la lunghezza del percorso dalla radice al nodo (cioè il numero di archi tra la radice e il nodo). L’altezza dell’albero è la profondità massima che può avere un nodo dell’albero.
Profondità e altezza radice profondità 0 profondità 1 altezza 3
Albero binaro pieno Un albero binario si dice pieno se: tutte le foglie hanno la stessa profondità h tutti i nodi interni hanno grado 2 Un albero pieno di n nodi ha altezza esattamente . Un albero pieno di altezza h ha esattamente 2h+1-1 nodi (2h-1 nodi interni + 2h foglie).
Albero binaro pieno Nodi totali n = 2h+1-1 = 24-1 = 15 radice 1 2 3 altezza h=3 4 5 6 7 8 9 10 11 12 13 14 15 Nodi totali n = 2h+1-1 = 24-1 = 15 Nodi interni 2h-1 = 7 Foglie 2h = 8 Altezza h = = 3
Albero binaro completo Un albero binario si dice completo se tutte le foglie hanno profondità h o h-1, dove h è l’altezza dell’albero tutti i nodi interni hanno 2 figli, eccetto al più uno.
Albero binaro completo radice 1 2 3 altezza h=3 profondità h-1 4 5 6 7 8 9 10 11 12 profondità h Unico nodo interno con 1 figlio