Algoritmi Avanzati a.a.2014/2015 Prof.ssa Rossella Petreschi

Slides:



Advertisements
Presentazioni simili
Algoritmi Paralleli e Distribuiti a.a. 2008/09 Lezione del 08/05/2009 Prof. ssa ROSSELLA PETRESCHI a cura del Dott. SAVERIO CAMINITI.
Advertisements

Algoritmi Avanzati a.a.2014/2015 Prof.ssa Rossella Petreschi Lezione n°9.
Prog21 Alberi binari (radicati e ordinati) Il figlio destro della radice La radice Il figlio sinistro della radice Il padre del nodo 5.
Prof.ssa Rossella Petreschi Lezione del 3/12/2013 del Corso di Algoritmica GRAFI e PLANARITA’ Lezione n°15.
Prof.ssa Rossella Petreschi Lezione del 29 /10/2014 del Corso di Algoritmica Lezione n°8.
Algoritmi Avanzati a.a.2013/2014 Prof.ssa Rossella Petreschi Somme prefisse Lezione n°2.
Algoritmi Avanzati a.a.2011/2012 Prof.ssa Rossella Petreschi L’ausilio delle occorrenze Circuiti di ordinamento Lezione n°5.
Algoritmi e Strutture dati a.a.2010/2011 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2015/2016 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2014/2015 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2014/2015 Prof.ssa Rossella Petreschi
Lezione n°10 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2014/2015 Prof.ssa Rossella Petreschi
Branch and Bound Lezione n°19 Prof.ssa Rossella Petreschi
Branch and Bound Lezione n°14 Prof.ssa Rossella Petreschi
Analisi di sequenze di operazioni Union-Find
Algoritmi Avanzati a.a.2010/2011 Prof.ssa Rossella Petreschi
Lezione n°9 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2014/2015 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2013/2014 Prof.ssa Rossella Petreschi
Alberi binari Definizione Sottoalberi Padre, figli
Algoritmi Avanzati Prof.ssa Rossella Petreschi
Lezione n°17 Prof.ssa Rossella Petreschi
Lezione n°15 Prof.ssa Rossella Petreschi
Rappresentazione di alberi
Algoritmi Avanzati a.a.2010/2011 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2011/2012 Prof.ssa Rossella Petreschi
Complessità ammortizzata degli algoritmi Union Find
Algoritmi Avanzati a.a.2013/2014 Prof.ssa Rossella Petreschi
La gestione degli insiemi disgiunti
Algoritmi Avanzati a.a.2011/2012 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2013/2014 Prof.ssa Rossella Petreschi
Algoritmi Avanzati Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2011/2012 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2013/2014 Prof.ssa Rossella Petreschi
Algoritmi Avanzati Prof.ssa Rossella Petreschi
Algoritmi Avanzati Prof.ssa Rossella Petreschi
Algoritmi Avanzati Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2010/2011 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2014/2015 Prof.ssa Rossella Petreschi
Usi (meno scontati) della visita DFS
Lezione n°4 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a.2010/2011 Prof.ssa Rossella Petreschi
Paths, tree and flowers Lezione n°14
K4 è planare? E K3,3 e K5 sono planari? Sì!
Algoritmi e Strutture Dati
per rappresentare grafi
Lezione n°11 Prof.ssa Rossella Petreschi
Lezione n°12 Prof.ssa Rossella Petreschi
ABBINAMENTO Lezione n°13
Algoritmi e Strutture dati a.a.2010/2011 Prof.ssa Rossella Petreschi
Algoritmi e Strutture Dati
Rappresentazione di alberi
Algoritmi per il flusso nelle reti
Branch and Bound Lezione n°18 Prof.ssa Rossella Petreschi
Schema generale, visita in ampiezza e profondità.
Algoritmi e Strutture Dati
Usi (meno scontati) della visita DFS
Lezione n°14 Prof.ssa Rossella Petreschi
Algoritmi Avanzati Prof.ssa Rossella Petreschi
Algoritmi e Strutture dati a.a.2010/2011 Prof.ssa Rossella Petreschi
Algoritmi Avanzati a.a. 2010/11
Algoritmi e Strutture Dati
Alberi di ricerca Lezione n°4
Algoritmi e Strutture dati a.a.2010/2011 Prof.ssa Rossella Petreschi
Lezione n°7 Splay-Trees e Heaps Prof.ssa Rossella Petreschi
Algoritmi e Strutture dati a.a.2010/2011 Prof.ssa Rossella Petreschi
Algoritmi e Strutture Dati
Algoritmi e Strutture dati a.a.2010/2011 Prof.ssa Rossella Petreschi
Unione per ranghi compressi
Transcript della presentazione:

Algoritmi Avanzati a.a.2014/2015 Prof.ssa Rossella Petreschi Lezione n°6 Algoritmi Avanzati a.a.2014/2015 Prof.ssa Rossella Petreschi 1

Tour di Eulero Dato un grafo G, un Tour di Eulero (TDE) su G è un ciclo (cammino chiuso) che passa su ogni arco una e una sola volta. Non tutti i grafi ammettono un tour di Eulero, quelli in cui ogni nodo ha grado pari si. Dato un albero T = (V, E) è possibile costruire un grafo G = (V, E') con E' =  (v,u), (u,v) :  (u,v)  E }. Per ogni nodo di G, il numero di archi entranti è uguale al numero di archi uscenti, quindi G contiene un circuito euleriano. c h g e f b i d a c h g e f b i d a 2

La funzione TDE Il TDE è una sequenza ciclica di tutti gli archi del grafo costruita a partire da un qualunque nodo. Ad esempio: (c,i)(i,a)(a,d)(d,a)(a,i)(i,g)(g,i)(i,c)(c,f)(f,c)(c,h)(h,e)(e,h)(h,c)(c,b)(b,c) Per semplicità si può scrivere il TDE come: c i a d a i g i c f c h e h c bc Si può vedere il TDE come una funzione che, per ogni arco, identifica il successore nel tour: TDE(c,i) = (i,a) TDE(i,a) = (a,d) TDE(a,d) = (d,a) TDE(d,a) = (a,i) TDE(a,i) = (i,g) ecc… c h g e f b i d a 3

Costruzione della funzione TDE Affinché tutti gli archi siano visitati, è fondamentale che, per ogni nodo v, fra l’apparizione nel tour dell’arco entrante (u,v) e quella dell’arco uscente (v,u) siano presenti tutti gli archi relativi alla visita di tutti gli altri nodi adiacenti a v. Per garantire questa condizione è sufficiente considerare un ordinamento ciclico degli adiacenti di ogni nodo. Se si entra in v con l’arco (u,v) se ne esce seguendo il successore di u in tale ordinamento: TDE(u,v) = (v, nextv(u)) dove nextv(u) identifica il nodo che segue u tra gli adiacenti di v. 4

Come costruire il TDE Vogliamo ora calcolare su una PRAM-EREW il TDE: a partire da un albero (rappresentato come elenco di archi), si vuole una struttura che permetta di identificare efficientemente il successore di ogni arco nel tour. Utilizziamo delle liste di adiacenza cicliche con un informazione addizionale: per ogni arco (u,v) manteniamo un puntatore all’arco (v,u). In questo modo, dato l’arco (u,v) (nella lista di adiacenza di u), si potrà facilmente accedere all’arco (v,u) e quindi al suo successore nella lista di adiacenza di v. 5

Struttura dati per il TDE c b a h i e f g (e,h) (h,c) (c,f) (c,b) (c,i) (i,g) (a,i) (a,d) 6

Passo 1 Il processore i-esimo costruisce il reciproco dell’arco i-esimo e imposta opportunamente i puntatori. (e,h) (h,e) (h,c) (c,h) (c,f) (f,c) (c,b) (b,c) (c,i) (i,c) (i,g) (g,i) (a,i) (i,a) (a,d) (d,a) (e,h) (h,c) (c,f) (c,b) (c,i) (i,g) (a,i) (a,d) 7

Passo 2 Si ordina lessicograficamente il vettore degli archi. Nota: se nell’eseguire l’ordinamento si spostassero realmente i dati in memoria tutti i puntatori agli archi reciproci verrebbero perduti. Per ovviare a questo problema la soluzione più semplice è quella di calcolare la sequenza ordinata degli indici che si userà poi per accedere al vettore come se fosse ordinato. (a,d) (a,i) (b,c) (c,b) (c,f) (c,h) (c,i) (d,a) (e,h) (f,c) (g,i) (h,c) (h,e) (i,a) (i,c) (i,g) 8

Passo 3 Si creano le liste di adiacenza circolari per ogni nodo nella seguente maniera: si divida la lista in blocchi dallo stesso primo nodo dell’arco; per ogni arco si imposti il puntatore al successivo nel blocco; l’ultimo arco di ogni blocco punti al primo. Tempo parallelo per la costruzione della struttura dati: Passo 1: costante Passo 2: tempo per l’ordinamento Passo 3: costante (a,d) (a,i) (b,c) (c,b) (c,f) (c,h) (c,i) (d,a) (e,h) (f,c) (g,i) (h,c) (h,e) (i,a) (i,c) (i,g) 9

Radicare l’albero Input: Tour di Eulero (TDE) di un albero non radicato T, dato per liste di adiacenza. Output: Cammino di Eulero (CDE) di T radicato in r e T rappresentato tramite vettore di padri. Algoritmo: Sia v un qualunque adiacente di r, si spezza il TDE ponendo TDE (v,r) = 0. Ora, per distinguere, in ogni arco, un nodo padre e un nodo figlio, si assegna valore 1 ad ogni arco del cammino di Eulero ottenuto e si calcolano le somme prefisse S su tali valori. Si avrà p(w) = v sse S(v,w) < S(w,v) Nota: se analizziamo l'orientamento dato, vediamo che esso segue una visita di tipo DFS, ma ciò non vuol dire che abbiamo realizzato una DFS in parallelo che è anzi uno di quei problemi che restano inerentemente sequenziali. 10

Calcolo di funzioni elementari Per calcolare le funzioni elementari su alberi radicati (dati in input con il loro CDE) adoperiamo il seguente schema. Considerando, per ogni vertice v, l’arco discendente (p(v),v) e l’arco ascendente (v,p(v)): si assegni, a seconda del problema in considerazione, un valore agli archi ascendenti e un valore agli archi discendenti; si eseguano le somme prefisse sulla sequenza di valori che si ottiene seguendo il Cammino di Eulero; a seconda del problema, si dia una funzione di lettura della soluzione. 11

Visita in postorder CDE h e c b i a d g f 1 S 2 3 4 5 6 7 8 v a b c d Fatto: nella numerazione in postorder (FS,…,FD,R), ogni nodo v viene numerato quando la sua visita è completata, ovvero quando, con la tecnica del backtrack, si torna al padre p(v). Dato il CDE di un albero T radicato in r, per ottenere la numerazione dei nodi in postorder sfruttando il Fatto, assegniamo valore +1 ad ogni arco (v,p(v)) che risale dal figlio al padre e valore 0 ad ogni arco (p(v),v) che scende dal padre al figlio. Sulla sequenza così ottenuta eseguiamo poi le somme prefisse ottenendo S. La numerazione in postorder è data da:  v  r Post(v) = S(v,p(v)) v = r Post(v) = n Riprendendo l’albero precedentemente visto, consideriamolo radicato in h (per chiarezza riportiamo solo il primo nodo di ogni arco nel CDE). CDE h e c b i a d g f 1 S 2 3 4 5 6 7 8 v a b c d e f g h i Post 4 2 8 3 1 7 5 9 6 12

Discendenti di un nodo CDE h e c b i a d g f 1 S 2 3 4 5 6 7 8 v a b c Fatto: Sia dato un albero T con i nodi numerati in postorder. Il numero dei nodi nel sottoalbero radicato in un nodo v (incluso) è dato dalla differenza tra il massimo ed il minimo valore che i nodi in Tv hanno nella numerazione, ovvero è dato dalla differenza del numero di nodi visitati prima di ritornare a p(v) e il numero di nodi visitati prima di raggiungere v. Con la numerazione in postorder il massimo valore in Tv è esattamente quello di Post(v) mentre il minimo può essere trovato in corrispondenza dell’arco (p(v),v). Il numero di discendenti della radice è |Tr| = n per ogni altro nodo il valore è |Tv| = S(v,p(v)) - S(p(v),v) CDE h e c b i a d g f 1 S 2 3 4 5 6 7 8 v a b c d e f g h i |Tv| 2 1 7 9 4