Problema n. 1 Nel riquadro sottostante sono mostrate le registrazioni in voltage-clamp di una corrente dovuta all’apertura di canali voltaggio-dipendenti. La conduttanza massima è G=10 mS; inoltre tali canali possiedono un’unica gate di attivazione e non inattivano. a) Dopo aver messo in grafico i valori della corrente I misurata allo stato stazionario in funzione del potenziale Vc servendosi del grafico e di un righello, stabilire qual è il valore del potenziale di equilibrio (Eeq); b) Calcolare i valori della conduttanza g e quindi della probabilità di apertura dei canali Po ai vari potenziali. Mostrare le formule utilizzate nei calcoli.
Eeq: valore di Vm al quale la corrente ionica a canale aperto è zero g=I/(Vm-Eeq) Po=g/Gmax)
Problema n. 2 Una cellula contiene 105 canali al Ca2+ voltaggio-dipendenti, ciascuno di essi è dotato di due gates m per l’attivazione identiche e indipendenti che seguono lo schema cinetico a due stati sotto indicato con costanti di velocità voltaggio-dipendenti. a (V) b Gate m chiusa Gate m aperta mV V e 20 / 40 ) ( + = a (sec - 1 400 b Che ampiezza raggiungono le correnti totali di whole-cell allo stato stazionario quando la cellula è clampata a -80 mV e a +20 mV assumendo che la cellula abbia solo canali al Ca2+, che la conduttanza di singolo canale sia g= 20 pS e che ECa= +80 mV? Se la probabilità di apertura della singola gate a +20 mV segue il seguente andamento temporale: m(t) = 0.3∙(1-e-t/tau), stabilire dopo quanti ms (approssimare alla 2a cifra decimale) la singola gate m avrà una probabilità del 50 % di essere aperta a +20 mV. Vc I_Ca (pA) alfa(V) beta(V) m_inf g (pS) N E_Ca (mV) -80 -0.02 0.73 2956 0.0002 20 100000 80 +20 -11493 109 243 0.3096 taum=1/(a+b)=2.8 ms P(0.5) → 1.94 ms
N=105 m=0.3096 (+20 mV) g=20pS V=+20mV; E=+80mV taum=1/(a+b)=2.8 ms P(0.5) → 1.94 ms P∞(+20mV)=0.3 50% di 0.3=0.15 → 0.15=0.3(1-exp(-t/2.8)) → t=2.8ln(2)=1.94 ms
Problema n. 3 Si supponga che depolarizzando in condizioni di voltage-clamp la membrana di un neurone dal potenziale di riposo ad un certo potenziale Vf = -20 mV, la probabilita’ di apertura di una singola gate di attivazione “n” di un canale voltaggio-dipendente raggiunga il seguente valore allo stato stazionario: n∞(-20) = 0.5. a) Sapendo inoltre che la conduttanza massima e’ Gmax = 10 nS, che il potenziale di equilibrio dello ione permeante è Eeq = -70 mV e che il canale possiede due gates di attivazione uguali e indipendenti e nessuna gate di inattivazione, calcolare il valore allo stato stazionario della corrente I a -20 mV. b) Se la probabilità di apertura della singola gate a -20 mV segue il seguente andamento temporale: n(t) = 0.5∙(1-e-t/2), stabilire dopo quanti ms (approssimare alla 1° cifra decimale) metà dei canali apribili a -20 mV saranno aperti. a) Vf = -20 mV Eeq = -70 n∞(-20) = 0.5 Gmax = 10 nS gates = 2 g(-20) [nS] I(-20) [pA] 2.5 125 I=n2·Gmax(Vm-Eeq)
b) t n n2 0.00 1 0.20 0.04 2 0.32 0.10 3 0.39 0.15 4 0.43 0.19 5 0.46 0.21 6 0.48 0.23 7 0.24 8 0.49 9 10 0.50 0.25 11 12 P∞=(0.5)2 = 0.25 P1/2 = (0.5)2/2 = 0.125 P1/2 = 0.125 = (0.5*(1-exp(-t/2))2 √(0.125) = 0.5*(1-exp(-t/2) t=-2ln(0.29)=2.45 ms n(t) = 0.5*(1-exp(-t/2) P(t)=n2(t) = (0.5*(1-exp(-t/2))2
n(t)=prob. singola gate aperta P(t)=prob. canale aperto = n2(t) Calcolo analitico di P∞: Calcolo grafico di P∞: Dobbiamo risolvere l’equazione rispetto a t:
Problema N. 4 La figura sottostante è la traccia idealizzata di una corrente di singolo canale registrata da un canale del Ca2+ voltaggio-dipendente. Il potenziale di inversione di questo canale è circa +50 mV e il voltaggio è clampato a -10 mV. qual è la conduttanza di singolo canale aperto se la relazione I/V di singolo canale è lineare? Qual è la probabilità di apertura a -10 mV? Se la traccia è rappresentativa delle tracce di corrente per un lungo periodo di tempo, stimare i valori delle quattro costanti di velocità k+1, k-1, a e b supponendo che il modello cinetico sia a tre stati con due stati chiusi contigui ed uno stato aperto: Non essendo possibile in questo contesto costruire e interpolare gli istogrammi di apertura e chiusura, per il calcolo dei tempi medi di apertura e di chiusura utilizzate le medie aritmetiche ottenute dai valori riportati nella tabella sottostante facendo però attenzione che esiste un’attività a bursts con due distinte tipologie di chiusure aventi durate significativamente diverse (vedi traccia idealizzata.
TABELLA → b = 0.232 ms-1 → a = 0.024 ms-1 → k+1 = 0.188 ms-1 Dur. aperture (ms) Dur. chiusure (ms) 5 2.5 7.5 35 10 1) g=i/(V-E)=-2·10-12/((-10-50)·10-3)= 0.033x10-9S=33 pS 2) Po=To/(To+Tc) = 77.5/(77.5+80+70) = 0.34 MOT = 1/b = 77.5/18 = 4.3 MC1T = 1/(a+k-1) = 80/15 = 5.3 MC2T = 1/k+1 = 70/2 = 35 MOB= a/k-1 +1 = (6+4+8)/3 = 6 → b = 0.232 ms-1 → a = 0.024 ms-1 → k+1 = 0.188 ms-1 → k-1 = 0.005 ms-1
Problema N. 5 La figura sottostante mostra delle correnti di singolo canale registrate dallo stesso canale nella stessa cellula. Il voltaggio attraverso il patch di membrana era clampato ai potenziali indicati. a) Ricavando i valori di corrente dalle tracce sottostanti, plottare la relazione corrente-voltaggio di questo canale. b) Qual è il potenziale di equilibrio della corrente ionica che fluisce attraverso questo canale? c) Qual è la conduttanza di questo canale? d) Supponendo che il canale segua uno schema cinetico del tipo: e che al potenziale di +80 mV la durata complessiva delle aperture e chiusure sia: To=22.1 ms, Tc1=13.6 ms e Tc2=40 ms, calcolare la probabilità di apertura. e) Sapendo inoltre che dall’analisi degli istogrammi delle aperture e chiusure a +80 mV risulta: tau_o=0.81 ms, tau_c1=1.1 ms e tau_c2=25 ms e che il numero medio di aperture per burst è MOB=5, calcolare le quattro costanti cinetiche a +80 mV.
Po(+80)=To/(To+Tc)=0.29 tO=1/b tC1=1/(a+k-1) tC2=1/k+1 MOB=1+a/k-1 Vc i (pA) Eeq (mV) g (S) 80 2 8 2.8E-11 40 0.9 0.2 -40 -1.4 -80 -2.5 Po(+80)=To/(To+Tc)=0.29 tO=1/b tC1=1/(a+k-1) tC2=1/k+1 MOB=1+a/k-1 MOT MC1T MC2T MOB 0.81 1.10 25.00 5.00 k+1 k-1 alfa beta 0.04 0.18 0.73 1.23
Problema N. 6 Un canale viene bloccato da un farmaco B extracellularmente e a canale aperto. Rappresentare lo schema cinetico minimo con cui può essere rappresentato il processo di blocco del canale. Da esperimenti eseguiti nella configurazione di outside-out e utilizzando due diverse concentrazioni di bloccante si sono ricavate le distribuzioni dei tempi di apertura mostrate nelle due figure sottostanti. Dai grafici calcolare i valori dei tempi medi di apertura alle due concentrazioni e da questi i valori delle costanti di velocità delle transizioni dallo stato aperto a quello chiuso e dallo stato aperto a quello bloccato.
[B]=5 mM [B]=50 mM 37% → 37% → 2.3 ms 6.3 ms [B] (mM) tO (ms) 0.16 50 2.3 0.43 37% → 37% → 2.3 ms 6.3 ms
b 1/tO=b+k+B·[B] per [B]=0 → b=0.13 ms-1 [B] (mM) tO (ms) 1/tO (ms-1) 5 6.3 0.16 50 2.3 0.43 b 1/tO=b+k+B·[B] per [B]=0 → b=0.13 ms-1
ESERCIZI – TEORIA DEI CIRCUITI
Resistenze collegate in serie Resistenze collegate in parallelo Partitore di tensione
RESISTENZE COLLEGATE IN SERIE R = R1+R2+R3+….. In tutte le resistenze fluisce la stessa corrente La somma delle tensioni ai capi di ogni resistenza è pari a quella totale RESISTENZE COLLEGATE IN PARALLELO Nel caso di due resistenze: Nel caso di resistenze tutte uguali: Req = R/n dove n è il numero di resistenze connesse in parallelo La tensione ai capi di ogni resistenza è la stessa La somma delle correnti è pari a quella totale che fluisce nel circuito
PARTITORE DI TENSIONE 1) Si applica a un gruppo di resistenze IN SERIE 2) Ai capi di ciascun resistore si stabilisce una parte della tensione totale che alimenta la serie V = 50* [6/(6+4)] = 30V ESEMPIO: Dato il circuito in figura, determinare il valore di V.
ESERCIZIO 1) Trovare la resistenza equivalente del circuito in figura. R3, R4, R5 sono connesse in parallelo: 1/R = (1/3) + (1/6) + (1/18) = 10/18 ovvero R = 1.8 W Il circuito è ora equivalente a quattro resistenze in serie: Req = (1+2.2+1.8+4) = 9 W ESERCIZIO 2) Se quattro lampadine identiche sono collegate in parallelo e la resistenza equivalente è di 100 W, quanto vale la resistenza di ciascuna lampadina? Poiché la resistenza equivalente di «n» resistenze uguali collegate in parallelo è data da Req=R/n (vedi slide 2), allora: R = Req * n = 100 * 4 =400 W
Rtot = (2+4.5+1.5) W = 8 W Rtot = (15+7.5+5) W = 27.5 W ESERCIZIO 3) Calcolare la resistenza totale dei circuiti in figura. R = (18*6)/(18+6) = 4.5 W Rtot = (2+4.5+1.5) W = 8 W R = (15/3) = 5 W R = (15/2) = 7.5 W Rtot = (15+7.5+5) W = 27.5 W
Ricaviamo i valori delle resistenze dalla legge di Ohm: R = V/I ESERCIZIO 4) In un circuito le differenze di potenziale misurate ai capi di 3 resistenze collegate in serie sono 5V, 7V, 10V. Sapendo che la corrente (I) che fluisce nel circuito vale 2A, determinare: la tensione totale fornita al circuito, la resistenza totale, i valori delle tre resistenze. Le tre resistenze sono collegate in serie quindi sono percorse dalla stessa corrente. Ricaviamo i valori delle resistenze dalla legge di Ohm: R = V/I R1 = V1/I = (5/2) = 2.5 W R2 = V2/I = (7/2) = 3.5 W R1 = V3/I = (10/2) = 5 W La resistenza totale del circuito è data dalla somma delle resistenze: Rtot = R1 + R2 + R3 = (2.5 + 3.5 + 5) W = 11 W La tensione totale : V = IRtot = (2*11)V = 22 V 21
ESERCIZIO 5) Nel circuito in figura determinare la tensione ai capi della resistenza R3. Se la resistenza totale del circuito è pari a 100 W, determinare la corrente che fluisce attraverso il resistore R1 e il valore della resistenza R2. Essendo le resistenze collegate in serie, la somma delle cadute di tensione ai capi di ciascuna resistenza deve dare il valore totale di tensione (25V), quindi: V3 = (25-10-4)V = 11 V La corrente che fluisce nel circuito sarà la stessa che fluisce in ogni resistenza: I=V/R = 25/100 = 0.25 A R2 = V2/I = 4/0.25 = 16 W
ESERCIZIO 6) Determinare la corrente che fluisce nel circuito in figura, la tensione ai capi della resistenza da 9W e la potenza dissipata dal resistore di 11W. Le tre resistenze sono in serie, quindi la resistenza totale: Rtot = (4+9+11) W = 24 W La corrente che fluisce nel circuito è la stessa che fluisce in ogni resistenza, quindi anche nella resistenza da 9 W: I = V/R = 12/24 = 0.5 A La tensione (V1) ai capi della resistenza di 9 W è data da: V1 = 0.5*9 = 4.5 V La potenza dissipata dalla resistenza di 11 W è data da: P = RI2 = 11 * (0.5)2 = 2.75 W
ESERCIZIO 7) Due resistenze sono connesse in serie. La corrente che fluisce nel circuito è pari a 3A. Se una resistenza vale 2W determinare: (a) il valore dell’altra resistenza (Rx); (b) la tensione ai capi della resistenza di 2W. (a) Essendo le resistenze collegate in serie la resistenza totale del circuito è data da: R = V/I = 24/3 = 8 W La resistenza Rx vale: Rx = (8-2) W = 6 W (b) La tensione ai capi della resistenza 2W è: V1 = IR1 = 3*2 = 6V Oppure usando la formula del partitore di tensione: V1 = 24*[2/(2+6)] = 6V
ESERCIZIO 8) Dato il circuito in figura, determinare la resistenza totale e la corrente che fluisce nella resistenza da 3W. Le resistenze sono collegate in parallelo, quindi: Rtot = (3*6)/(3+6) = 18/9 = 2 W Poiché le resistenze sono collegate in parallelo, la tensione ai capi di ogni resistenza è la stessa, quindi la corrente che fluisce nella resistenza da 3W è data da: I1 = V/R1 = 12/3 = 4 A
ESERCIZIO 9) Per il circuito mostrato in figura determinare il valore di V1. Se la resistenza totale del circuito è 36 W, determinare la corrente che fluisce nel circuito e il valore delle resistenza R1, R2 e R3. Le tre resistenze sono collegate in serie, quindi nel circuito circola la stessa corrente: I = V/Rtot = (18/36) = 0.5 A La somma delle tensioni deve essere pari alla tensione totale, quindi: V1 = [18 – (5+3)]V = 10 V Le tre resistenze valgono rispettivamente: R1 = V1/I = (10/0.5) = 20 W R2 = V2/I = (5/0.5) = 10 W R3 = V3/I = (3/0.5) = 6 W
La corrente che fluisce nella resistenza da 30 W è: ESERCIZIO 10) Dato il circuito in figura, calcolare la corrente che fluisce nella resistenza da 30 W e stabilire quale resistenza addizionale (Rx) bisogna inserire in parallelo con le due resistenze da 20 e 30 W affinché la corrente che fluisce nel circuito sia pario a 8A (supponendo che la tensione resti costante). Req= (20*30)/(20+30) = 12 W Il circuito si riduce a due resistenze in serie (4W e 12W). La tensione ai capi di Req usando la regola del partitore di tensione è: Veq = Vtot *[(Req/(Req + 4)] = 64*(12/16) = 48V La corrente che fluisce nella resistenza da 30 W è: I = Veq/R = 48/30 = 1.6 A Inserendo una terza resistenza in parallelo a quelle di 20 e 30 W comunque non cambierà la tensione cui verrà sottoposta: Rx = Veq/R = 48/8 = 6 W
ESERCIZIO 11) Tre resistori sono collegati in parallelo (20W, 20W , 30W). Quale resistore (Rx) deve essere collegato in serie ai tre al fine di avere una resistenza totale di 10W ? Se la potenza dissipata dal circuito è 0.36 kW, quale sarà la corrente che circola nel circuito? La resistenza equivalente dei tre resistori è: 1/Req = 1/20 + 1/20 + 1/30 = 8/60 Req = 60/8 = 7.5 W Se la resistenza appena ottenuta è collegata in serie con una resistenza Rx al fine di avere una resistenza totale di 10 W, allora : Rx = (10 – 7.5) W = 2.5 W Essendo P = RI2 allora: I = √ (P/R) = √ (360/10) = 6A
Condensatori collegati in serie Condensatori collegati in parallelo Carica/scarica del condensatore
CONDENSATORI IN PARALLELO La capacità è data da: C = Q/V [capacità = carica/tensione] La carica immagazzinata da un condensatore è data da: Q = I*t [carica = corrente*tempo] CONDENSATORI IN SERIE I condensatori in serie presentano sulle armature la stessa carica. 1/Ceq = 1/C1 + 1/C2 + 1/C3 + …. Nel caso di due condensatori: Ceq = (C1*C2)/(C1+C2) Nel caso di n condensatori uguali: Ceq = C/n CONDENSATORI IN PARALLELO I condensatori in parallelo sono sottoposti alla stessa tensione. Ceq = C1 + C2 + C3 + ….
ESERCIZIO 1) a) Determinare la tensione ai capi di un condensatore di 4 mF quando è caricato con 5 mC. b) Trovare la carica accumulata su un condensatore di capacità pari a 50 pF quando si applica una tensione di 2KV. a) C = 4 mF = 4*10-6 F Q = 5 mC = 5*10-3 C V = Q/C = (5*10-3)/(4*10-6) = (5*103)/4 = 1250 V = 1.25 KV b) C = 50 pF = 50*10-12 F V = 2KV = 2000 V Q =C*V = (50*10-12 )* 2*103 = 10*10-8 = 0.1 mC ESERCIZIO 2) Dati due condensatori di 2 e 6 mF collegati in serie e parallelo, calcolare la capacità equivalente in entrambi i casi. Collegamento in serie: Ceq = (2*6)/(2+6) = 12/8 = 1.5 mF Collegamento in parallelo: Ceq = 2+6 = 8 mF
ESERCIZIO 3) Una corrente di 4A fluisce in un condensatore di 20 mF per 3 ms. Determinare la tensione ai capi del condensatore. Essendo Q =I*t = 4*3* 10-3 = 12*10-3 C V = Q/C = (12*10-3)/(20*10-6) = 600 V ESERCIZIO 4) Un condensatore di 5 mF è caricato in modo che la tensione ai suoi capi sia di 800 V. Calcolare per quanto tempo il condensatore fornirà una scarica media di corrente di 2 mA. Q = C*V =( 5*10-6)*800 = 4*10-3 C t = Q/I = (4*10-3 )/(2*10-3) s = 2 s
ESERCIZIO 5) Quale condensatore deve essere collegato in serie con un condensatore di 30 mF affinché la capacità equivalente sia di 12 mF? Deve valere: (C1*Cx)/(C1+Cx) = Ceq quindi: Cx = (C1*Ceq)/(C1-Ceq) = (12*30)/(30-12) = 360/18 = 20 mF ESERCIZIO 6) Quattro condensatori di 1mF, 3mF, 5mF, 6mF sono collegati in parallelo ad un generatore di tensione di 100 V. Determinare: a) la capacità equivalente del circuito; b) la carica totale; c) la carica di ogni condensatore. Ceq = (1+3+5+6) mF = 15 mF Q = C*V = 15*10-6*100 = 1.5 mC La carica del condensatore da 1mF : Q1 = C1*V = 1*10-6*100 = 0.1 mC ecc……
ESERCIZIO 7) Tre condensatori sono collegati in serie come in figura. Calcolare a) la capacità equivalente; b) la carica di ogni condensatore e c) la tensione ai capi di ciascun condensatore. 1/Ceq = (1/3) + (1/6) + (1/12) = 7/12 da cui Ceq = 12/7 = 1.7 mF Q = C*V = (1.7*10-6) * 350 = 0.6 mC Essendo collegati in serie tutti i condensatori sono sottoposti alla stessa carica: V1 = Q/C1 = (0.6*10-3)/(3*10-6) = 200 V ecc…
PROCESSO DI CARICA di un condensatore Alla fine del processo di carica fra le due armature verrà riprodotta la stessa forza elettromotrice della batteria, quindi Q = fC (equivalente alla classica dicitura Q=VC) . La costante t = RC rappresenta il tempo che occorre alla carica Q(t) per raggiungere il 63% del valore massimo (fC), ovvero: Q(t) = 0.632*fC
PROCESSO DI SCARICA di un condensatore La costante t = RC rappresenta il tempo che occorre alla carica sul condensatore per scendere al 37% del valore iniziale Q0, ovvero: Q(t) = 0.37*Q0
Posto Q(t) = f*C*(1-e-t/RC) pari al 50% del suo valore massimo: ESERCIZIO 1) Si calcoli la costante di tempo di un circuito RC in cui C=100 mF e R = 220 KW ed il tempo che esso impiega a caricarsi fino al 50% della differenza di potenziale massima (f) fornita dalla batteria. = RC = (200*103)*(100*10-6) s = 22 s Posto Q(t) = f*C*(1-e-t/RC) pari al 50% del suo valore massimo: f*C*(1-e-t/RC) = 0.5*f*C e-t/RC = 0.5 t = -RC ln(0.5) = -22*(-0.693) s = 15.2 s Per la proprietà dei logaritmi: e-A/B = C ln(e-A/B) = ln C -A/B = ln C A = -B *(ln C)
ESERCIZIO 2) Si consideri un dispositivo come in figura in cui R1 = 150 kW, R2 = 250 KW, C=200 mF collegato ad una batteria che fornisce una forza elettromotrice (f) di 4.5 V. Una volta chiuso l’interruttore, calcolare la costante di tempo del processo, il valore massimo di carica sul condensatore ed il tempo affinché sulle armature si depositi il 75% di questo massimo. Il dispositivo si comporta come un circuito RC in serie, per cui possiamo scrivere: Req = R1 + R2 = (150+250) KW = 400 KW Il valore massimo di carica sarà dato da: Q(max) = f*C = (4.5*200*10-6) C = 900 mC La costante di tempo vale: t = RC = ReqC = (400*103)*(200*10-6) = 80 s Imponiamo che Q(t) = f*C*(1-e-t/RC) sia pari al 75% del valore massimo f*C: f*C*(1-e-t/RC) = 0.75*f*C e-t/RC= 0.25 T = -RC ln(0.25) = -80*(-1.39) s = 111 s
ESERCIZIO 3) Nel grafico è rappresentato l’andamento della corrente (resistiva) in funzione del tempo durante il processo di scarica di un circuito RC alimentato da una batteria la cui forza elettromotrice f=9V. Si calcolino i valori della resistenza, della capacità del condensatore e della corrente I1 (resistiva) quando t=t. Esaminando il grafico, ricaviamo immediatamente la costante di tempo: t = RC = 2s Inoltre (confronta slide 21): I0 = f/R = 0.0300 A da qui ricaviamo R: R = f/I0 = 9/0.03 = 300 W C = t/R = 2/(300) = 0.0067 F La corrente (resistiva) I1 quando t=t, è: I1 = 0.37*(f/R) = 0.37*0.0300 = 0.0111 A
ESERCIZIO 4) Un circuito consiste di un resistore collegato in serie con un condensatore di 0.5 mF ed ha una costante di tempo di 12 ms. Determinare il valore del resistore e la tensione ai capi del condensatore 7 ms dopo averlo collegato ad una batteria di 10V. Ricaviamo R dalla costante di tempo: R = t/C = (12*10-3)/(0.5*10-6) = 24 kW sappiamo che durante il processo di carica la tensione varia come V(t)=f*(1-e-t/t). Occupiamoci dapprima della parte esponenziale: -t/t = -(7*10-3)/(12*10-3) = -0.583 Quindi: V= 10*(1-e-0.583) = 10*(1-0.558) = 4.42 V
a) il valore iniziale della corrente (capacitiva) ESERCIZIO 5) Un condensatore di 20 mF è collegato in serie con un resistore di 50 kW e a sua volta il circuito è collegato ad una batteria (f) di 20V. Determinare: a) il valore iniziale della corrente (capacitiva) b) la costante di tempo del circuito c) Il valore della corrente (capacitiva) dopo 1 secondo (corrente capacitiva) d) Il valore della differenza di potenziale ai capi delle armature del condensatore dopo 2 secondi (dal momento in cui inizia a caricarsi) e) Il tempo impiegato affinché la differenza d potenziale ai capi delle armature del condensatore sia pari a 15V (a partire dal momento in cui il condensatore incomincia a scaricarsi). a) Il valore iniziale della corrente (capacitiva): I0 = V/R = f/R = 20/(50*103) = 0.4 mA b) La costante di tempo: t = RC t = (50*103)*(20*10-6) = 1 s c) La corrente (capacitiva) dopo 1 secondo: I = I0*e-(t/t) = 0.4*e-(1/1) = 0.4*0.368 = 0.147 mA (decadimento della corrente capacitiva) d) V = f*(1-e-t/t) = 20*(1-e-2/1) = 20*(1-0.135) = 20*0.865 =17.3 V e) V = V0*e-t/t 15=20*e-t/1 et = 20/15 t = ln(20/15) = ln 1.3333 = 0.288 s I - t - - I I r + + + I c
Carica del condensatore: V = f*(1-e-t/t) Scarica di un condensatore: V = V0*e-t/t
ESERCIZIO 6) Un condensatore di 0.1 mF è caricato a 200V prima di essere collegato ad un resistore di 4KW. Determinare: la corrente iniziale di scarica la costante di tempo Il tempo minimo richiesto affinché la differenza di potenziale ai capi del condensatore scenda sotto l’1%, espresso in unità di costante di tempo. a) La corrente iniziale è data da: I = V/R = 200/(4*103) = 0.05 A = 50 mA b) La costante di tempo è data da: t = RC = (4*103 ) * (0.1*10-6) = 0.0004 s = 0.4 ms c) L’1% del valore iniziale di differenza di potenziale corrisponde a 2V. Quindi: V=V0*e-t/t 2 = 200 * e-t/0.4 t = -0.4ms*ln(0.01) = 1.84 ms che corrispondono a circa 5 volte la costante di tempo t
ESERCIZIO 7) Quando un condensatore di 3 mF è collegato ad un resistore la differenza di potenziale decade del 70% in 3.9s. Determinare il valore del resistore. Detto V0 il valore iniziale della differenza di potenziale e V quello finale, allora se decade del 70% significa che dopo 3.9s V corrisponde al 30% di V0, ovvero: V/V0 = 30/100 = 0.3 Quindi: V = V0*e-t/t V/V0 = e-t/t 0.3 = e-3.9/t da cui ricavo t: ln (0.3) -3.9/t t = -3.9/ln(0.3) = 3.25 s Possiamo ora calcolare R: R = t/C = 3.25/(3*10-6) = 1.08*106 W = 1.08 MW
ESERCIZIO 8) Durante un potenziale d’azione il potenziale di membrana Vm di una cellula passa transitoriamente da -70 mV a +30 mV. Quando il neurone si trova a +30 mV, quale è la variazione di carica accumulata sulla faccia interna della membrana somatica? Quanti ioni hanno prodotto questo spostamento di carica? [Considerare la capacità della cellula dell’esercizio precedente]. La variazione del potenziale di membrana è: [+30-(-70)]mV = 100 mV. La carica spostata sulla superficie di membrana è: Q = C*V = 0.79 pF * (100*10-3 V) = 79*10-15 C Poiché durante la fase iniziale del potenziale d’azione la depolarizzazione della membrana è dovuta all’influsso di ioni sodio (monovalenti), sulla faccia interna della membrana si sono accumulati: 79*10-15 / 1.6*10-19 = 493750 ioni monovalenti
Leggi di Kirchhoff
ESERCIZIO 1) Determinare le correnti che fluiscono in ogni ramo del circuito in figura. Dopo aver deciso il verso della corrente per ogni maglia, applichiamo le leggi di Kirchhoff: -E1 + R1I1 –E2 + R2I2 = 0 -4 + 0.5I1 –12 + 2I2 = 0 E2 - R2I2 + R3I3 = 0 12 - 2I2 + 5I3 = 0 …… I1 = I2 + I3 I1 = I2 + I3 2.5*(6 + 2.5I3) + 0.5 I3 = 16 I1 = 6.52 A I2 = 6 + 2.5I3 I2 = 6.37 A I1 = I2 + I3 I3 = 0.15 A
ESERCIZIO 2) Si calcoli il valore della corrente in ciascuno dei rami del circuito in figura e la tensione fra i due nodi, sapendo che: f1 = 12 V f2 = 15 V R1 = 100 W R2 = 200 W R3 = 300 W Servono 3 equazioni per determinare il valore delle correnti incognite. I1 = I2 + I3 (equazione per le correnti) -f1 +R1I1 +R2I2 = 0 -f2 + I3R3 + R2I2 = 0 Risolvendo il sistema, dopo alcuni passaggi otteniamo: I3 = (R2I2-f2)/R3 f1 = R1I2 +R2I2 + R1(R2I2-f2)/R3 I1 = 27.3 mA I2 = 46.4 mA I3 = -19.1 mA VA – VB = R2I2 = (200*0.046)V = 9.2 V (equazioni per le cadute di potenziale)
ESERCIZIO 3) Scrivere senza risolverle le tre equazioni che permettono di ricavare il valori delle correnti in ogni ramo del circuito, supponendo noti i valori delle resistenze e delle batterie. Scelto il verso della corrente (frecce blu) possiamo scrivere le tre equazioni: -f1 + R1I1 – f2 + R2I2 = 0 f2 + f3 – R3I3 =0 I1 = I2+I3
ESERCIZIO 4) Scrivere senza risolverle le tre equazioni che permettono di ricavare il valori delle correnti in ogni ramo del circuito, supponendo noti i valori delle resistenze e delle batterie. f2 R1 R3 R2 f1 Scelto il verso della corrente (frecce nere) possiamo scrivere le tre equazioni: -f1 + R1I1 – f2 + R2I2 = 0 f2 + R2I2 + R3I3 =0 I1 = I2+I3