Workshop on Climatic Analysis and Mapping for Agriculture Consiglio Nazionale delle Ricerche Multi Source Meteorological Information and Mapping for Desert Locust Monitoring in the Sahel Region A. Di Vecchia, L. Genesio and G. Maracchi Workshop on Climatic Analysis and Mapping for Agriculture 14– 17 June 2005, Bologna
Mission To review desert locust monitoring in terms of system approach, sustainability and efficiency in order to improve peasant food security
Information flow Ground observations A Meteo and Remote sensing Information Seasonal forecasting Short/medium term forecast Rain and other parameter estimation NDVI analysis B Locust control - Locust reproduction and mapping Migration monitoring Migration forecast C Food security impact and contingency plan Agricultural and livestock production forecast Affected population Impact scenarios D Information diffusion Internet Ranet Bulletin
Approach Reinforce interaction between Plant Protection, Early Warning and Met Services Implement new existing technologies in the Met Services Develop meteorological information finalized to user needs
Meteorological Component Seasonal forecast (month +1 → month +3) Pre-alert Forecast (day +7 → +1) Estimation (day → day-7) Alert on conditions favorable to locust development GIS NDVI (day → day -10)
Short/medium term forecast Statistical Downscaling of Global Forecast System Timing: 00 - 180Hrs Resolution: 0.1° Spatial dimension : 18W 49E/3N 28N Timing: 00 - 180Hrs Resolution: 1° Spatial dimension: Global
Il modello meteorologico RAMS è stato sviluppato dall'Università di Fort Collins del Colorado (USA) ed è gestito da ATMET (ATmospheric Meteorological and Environmental Technologies) www.atmet.com. Il modello RAMS, versione 4.4 parallela, è operativo presso il Lamma su un Cluster Linux dal maggio 2001, con un dominio che copre l'area del Mediterraneo centrale. Come inizializzazione e condizioni al contorno vengono utilizzati i dati di previsione provenienti dal modello globale GFS, con cadenza esaoraria. Sono disponibili due run, una inizializzata alle ore 00 UTC e l'altra alle 12 UTC. La configurazione RAMS è caratterizzata da 2 griglie con le seguenti specifiche geometriche: Griglia 1: 200 x 172 punti griglia, 35 livelli verticali, 11 livelli di suolo. Risoluzione spaziale orizzontale: 20 km. Risoluzione spaziale verticale: da 50 m fino a 1100 m, con un fattore di stretching di 1.133. Time-step: 60 sec. Parametrizzazione convettiva attivata (Kain - Fritsch). Griglia 2: 180 x 134 punti griglia, 36 livelli verticali, 11 livelli di suolo. Risoluzione spaziale orizzontale: 6.5 km. Risoluzione spaziale verticale: da 50 m fino a 1100 m, con un fattore di stretching di 1.125. Time-step: 20 sec.
Forecast 7 days Forecast day + 1 Estimation day Estimation day - 1 Total 5 days
Food security impact zone Rain estimation Reproduction zone Food security impact zone
Rain estimation by MSG
Ecological condition monitoring NDVI monitoring by Meteosat 8 Output: NDVI daily NDVI 10 days
Food security component Risk zones forecast Tableau 5.4.1 Zones vulnérables issues des données DHC et Population Rurale concernée
Food security vulnerability status based on production forecast and desert locust damages (september 2004) Nom du Cercle Classement Simulation Situation structurelle Pop. rurale KAYES Très vulnérables Très vulnérables 295098 BAFOULABE Très vulnérables Vulnérable 192547 KENIEBA Très vulnérables Très vulnérables 101400 KITA Très vulnérables Très vulnérables 314706 YELIMANE Très vulnérables Très vulnérables 116016 KANGABA Vulnérable Vulnérable 85055 KATI Vulnérable Vulnérable 461245 NARA Vulnérable Non vulnérable 205245 YANFOLILA Vulnérable Non vulnérable 178532 DOUENTZA Vulnérable Non vulnérable 151123 DIRE Vulnérable Non vulnérable 59626 KIDAL Très vulnérables Très vulnérables 45909 TOTAL POPULATION VULNERABLE (octobre 2004) 2206502
Conclusions Applied meteorological information is in a transition phase due to new existing tools Meteorological forecast represent a radical change in the current approaches by Met Offices Met products have to be finalized to the specific user Met information has to be limited in quantity and quality to be useful Integration between Technical Services is vital in information production
West Africa: www.ibimet.cnr.it/Case/sahel/ North Africa: www.lamma.rete.toscana.it