TEORIA CINETICA DEI GAS Modello particella, m massa, v velocità media, Np numero particelle totali, cubo di lato l Ecin = ½ mv2 momento quantità di moto = mv N= numero di Avogadro, n numero di moli Urto elastico, non cambia la velocità, cambia il momento = 2mv= momento iniziale – momento finale Urti/secondo= numero particelle rimbalzate avanti e indietro/ tempo per percorrere la distanza 2l La pressione su una parete risulta: P = (mom. trasferito/urto)x(urti/secondo)x(1/area parete)= (2mv)x(Np/3)(v/2l)x1/l2 = 1/3(Npl-3mv2) Ricordando che Ecin media=1/2mv2(v media) e l3 è il volume, si ottiene PV= 2/3 X Np X Ecin. media = 2/3 n (N Ecin. media) = 2/3 n Ecin mole = nRT Ecin mole= 3/2RT. Questa relazione fornisce la definizione più rigorosa di temperatura T, temperatura assoluta misurata in Kelvin e ci dice anche che l’energia cinetica di un gas ideale dipende solo dalla temperatura assoluta.
LA TEORIA CINETICA DEI GAS GIUSTIFICA LE PROPRIETA’ DEI GAS SULLA BASE DELLE DIREZIONI E DELLE VELOCITA’ DEI MOTI MOLECOLARI ENERGIA CINETICA MEDIA per particella E = 3/2 (R/N) T = 3/2 kT = ½ mv2 R/N = k costante di Boltzmann= 1,38 x 10-2 JK-1
DISTRIBUZIONE VELOCITA’ MOLECOLARI DI MAXWELL-BOLTZMANN NE = Ntote-E/RT E = energia cinetica nella direzione dell’urto NE rappresenta il numero di moli che su N moli totali possiedono alla temperatura assoluta T energia cinetica uguale o superiore al valore E. La meccanica statistica dimostra la validità di questa relazione anche nel caso di gas reali, liquidi e solidi. Nelle reazioni vedremo che sarà molto importante identificare il numero di particelle che posseggono una certa energia cinetica.
Di DU si occupa la TERMODINAMICA CHIMICA. L’energia ceduta o assorbita nei processi chimici proviene dalla formazione o dalla rottura di legami e dalle risultanti variazioni di energia potenziale. E’ molto complesso lo studio dell’energia assoluta di una mole di molecole (termodinamica e meccanica statistica). In realtà nei processi chimici quello che conta non è il valore assoluto di energia ma la variazione di energia DU. DU = E totale prodotti – E totale reagenti ( le energie dei nuclei non variano, variano solo quelle degli elettroni e quindi dei legami) Di DU si occupa la TERMODINAMICA CHIMICA. Terminologia : sistema, ambiente, energia interna. Sistema: parte limitata dell’ambiente, oggetto di studio Ambiente: l’insieme dei sistemi con cui l’oggetto di studio può scambiare energia. Energia interna: l’insieme di tutti i contribuiti energetici Sistema isolato: non scambia energia
Una reazione chimica: un sistema che passa da reagenti a prodotti, quindi dallo stato iniziale di reagenti allo stato finale di prodotti. FORMULAZIONE SPERIMENTALE DELLA PRIMA LEGGE DELLA TERMODINAMICA: DURANTE QUALSIASI TRASFORMAZIONE L’ENERGIA SI CONSERVA, PUO’ VARIARE NELLA FORMA. Formulazione matematica DU= Q-L. U= energia interna Q= calore L= lavoro U è l’energia interna di un sistema che può variare per scambi di energia. Calore e lavoro sono mezzi con cui l’energia è scambiata, il lavoro è energia trasferita per mezzo di un collegamento meccanico, mentre il calore è energia trasferita a causa di una differenza di temperatura, ovvero di energia cinetica. L’energia interna di un sistema è una funzione di stato, ovvero è una proprietà intrinseca del sistema, mentre i mezzi con cui è scambiata l’energia variano secondo il percorso seguito dalla trasformazione. Un sistema immagazzina energia se assorbe calore e/o se subisce un lavoro, cede energia se compie un lavoro e/o se cede calore.
A + B C + D U energia interna reagenti U energia interna prodotti DU= U prodotti –U reagenti DU0 arriva dall’ambiente DU0 è ceduta all’ambiente
Espansione di un gas contro la forza esterna costante P1, V1, T1 P1 V2 T2 Pistone altezza X da X1 a X2 = DX A superficie pistone Lavoro= forza x spostamento = f est x DX = f est/ A x (A x DX) = P x DV A pressione costante, generico D (PV)
Figura 15-2 Esempio di processo endotermico.
DH di formazione H2 + ½ O2 H2O + 285.8 kJ STATO STANDARD: DH° temperatura costante 1 atm p ogni gas 1 mole/ litro specie nello stato più stabile
LEGGE DI HESS SO2 + 1/O2 SO3 DH° reazione ? S + O2 SO2 + DH° f SO2 DH° reazione = DH° f SO3 - DH° f SO2 ∑ i DH° f prodotti - ∑ j DH° f reagenti = DH° LEGGE DI HESS DH° elementi = 0