Caratteri monofattoriali Corso di Genetica Medica Corsi di Laurea in Fisioterapia, Logopedia, Ortott. Ass. Oft, T.N.P.E. Facoltà di Medicina e Chirurgia Alberto Piazza
Testo consigliato: Giuseppe Novelli, Emiliano Giardina Genetica Medica Pratica Aracne editrice, 00173 Roma, via R.Garofalo 133, tel. 06/72672233 Euro 16
Rilevanza clinica delle malattie genetiche • circa il 25% di tutti i pazienti in età pediatrica manifestano problemi associati a malattie genetiche ereditarie • alcune malattie genetiche molto tempo dopo la nascita (vengono chiamate “ad esordio tardivo”, per esempio il morbo di Alzheimer, la malattia di Huntington) • alcune malattie genetiche sono molto più frequenti in alcune popolazioni (per esempio: la fibrosi cistica tra gli Europei, l’anemia falciforme nel Mediterraneo ed in Africa, il Tay-Sachs negli Ebrei askenaziti)
Terminologia Locus: la posizione di un gene su un cromosoma es. sex determining gene, gene SRY SRY si trova sul cromosoma Y nella posizione p11 Alleli: forme alternative di un gene Per es. nel gene della beta globina, il codone (tripletta di nucleotidi) che codifica per il sesto aminoacido: Allele normale A .……………...GAG..... (acido glutammico) Allele della cellula falcemica S .….GTG..... (valine) mutazione Allele “cristallino” C .………………AAG..... (lisina) mutazione
Terminologia Omozigote: porta 2 alleli identici ad un locus, bA bA o bS bS Eterozigote: porta 2 alleli differenti ad un locus, bA bS Eterozigote composto: porta 2 alleli non normali (2 mutazioni diverse) ad un locus, bSbC Portatore (sano): eterozigote asintomatico Probando (Propositus): l’individuo affetto attraverso il quale la famiglia di cui fa parte viene portata all’esame Genotipo: costituzione genetica di un individuo, nella sua totalità o riferita ad un gene specifico, per es. anemia falciforme, bS bS Fenotipo: caratteristica osservabile di un individuo, o di una cellula
Trasmissione ereditaria dei caratteri mendeliani Dominante: ogni tratto o carattere che si esprima nell’ eterozigote, cioè, nel caso di malattia, in cui sia sufficiente una sola copia del gene difettoso per esprimere il fenotipo affetto Recessivo: ogni tratto o carattere che si esprima solo nell’ omozigote, cioè, nel caso di malattia, in cui entrambe le copie del gene difettoso devono essere presenti per esprimere un fenotipo affetto Codominante: nel caso in cui lo stato eterozigote esprima un fenotipo distinto da quello dei due stati omozigoti, per es. gruppi sanguigni, enzimi eritrocitari, etc. I fenotipi possono essere analizzati e misurati a differenti livelli. In molte malattie metaboliche gli eterozigoti sono sani (trasmissione recessiva), ma l’enzima responsabile della malattia può manifestarsi nel siero con livelli di concentrazione intermedi rispetto a quelli dei due stati omozigoti.
Malattie ereditarie dominanti Mutazioni che inducono un eccesso di funzione La mutazione produce una proteina con funzione o espressione alterata, nella maggior parte dei casi una sovra-espressione o una espressione scorretta (nel tessuto o nello stadio di sviluppo sbagliati) della proteina. Per es. nella malattia di Charcot-Marie-Tooth, una duplicazione errata del DNA (3 copie) -> sovra-espressione Insufficienza del corredo aploide (aploinsufficienza) La riduzione di una copia del gene (50% ) è dannosa. Per esempio la ipercolesterolemia, dovuta ad una mutazione nel recettore della lipoproteina a bassa densità (LDL) genera una diminuzione dei livelli di recettore da cui circa il doppio di colesterolo in circolo -> rischio maggiore di patologie cardiovascolari Mutazioni dominanti negative Mutazioni che generano un prodotto proteico che non solo non funziona, ma anche inibisce o interferisce con la funzione delle proteine normali, tipicamente proteine multimeriche. Un esempio è l’ osteogenesis imperfecta, collageno di tipo I composto da 3 polipeptidi
Malattie ereditarie recessive Mutazioni che inducono una perdita di funzione Gli eterozigoti (portatori) sono normali, una riduzione del prodotto proteico del 50% viene tollerato se il rimanente 50% è sufficiente per una funzione normale Esempio: tratto falcemico, bA bS Gli omozigoti sono affetti perché non viene prodotta proteina o quella che è prodotta non funziona normalmente Esempio: anemia falciforme, bS bS
Trasmissione ereditaria di un singolo gene (eredità monofattoriale) • Mendeliana – Autosomica Dominante (AD) (8544) – Autosomica Recessiva (AR) (1730) – X-linked Recessiva (X-linked R) (785) – X-linked Dominante (X-linked D) – Y-linked (41) • Non-mendeliana Caratteri che sono famigliari ma non seguono una segregazione famigliare – malattie mitocondriali (60) • madri affette trasmettono il carattere a tutti i figli • padri affetti non trasmettono il carattere GENI MAPPATI 8191 (al 2/11/2002, fonte OMIM)
Eredità autosomica dominante • un individuo affetto ha comunemente almeno un genitore affetto, ma vi sono eccezioni • si manifesta in uguale misura nei due sessi - la trasmissione non dipende dal sesso • un figlio di una persona affetta e di una persona non affetta ha il 50% di probabilità di essere affetto • individui non affetti non trasmettono la malattia
Eredità autosomica recessiva • gli individui affetti sono omozigoti • nella maggior parte dei casi, entrambi i genitori sono portatori sani – in media, 1 su 4 figli è affetto • la trasmissione non dipende dal sesso • matrimoni tra individui affetti e non affetti genera solo figli eterozigoti sani – a meno che il partner non affetto sia eterozigote • più è rara la malattia, più è probabile che l’individuo affetto sia figlio di genitori consanguinei tra di loro (inglese inbreeding, italiano poco usato inincrocio)
Eredità X-Linked recessiva • l’ individuo affetto è più frequentemente un maschio • i maschi affetti sono comunemente nati da genitori sani – la malattia viene ereditata dalla madre che è portatrice sana (eterozigote) e può avere parenti maschi affetti • le femmine portatrici sono fenotipicamente normali (asintomatiche) – in media, 1 su 4 figli è affetto • in media il 50% dei maschi di una fratria è affetto • NON vi è trasmissione da padre a figlio maschio – ma un matrimonio di un maschio affetto con una femmina portatrice può simulare una trasmissione da maschio a maschio
Eredità X-Linked dominante (rara) • generalmente le femmine sono affette il doppio delle volte dei maschi – certe malattie sono letali nel maschio emizigote • le femmine sono spesso affette più lievemente e con più variabilità dei maschi – dovuto all’inattivazione del cromosoma X (o Lyonizzazione) • padri affetti possono avere solo figlie femmine affette ma non figli maschi affetti • in media il 50% di tutti i figli di una madre affetta saranno affetti
Eredità Y-Linked (rara) • solo gli individui maschi sono affetti • trasmissione diretta da padre a figlio – cromosoma Y • i figli maschi affetti avranno sempre un padre affetto – a meno che sia insorta una nuova mutazione • per esempio nei geni che inducono la differenziazione di un embrione in un maschio, che esprimono fattori spermatogenetici, gli antigeni minori dell’istocompatibilità (HY)
Età di comparsa di alcune malattie genetiche malattia genetica malattia congenita
Variabilità di trasmissione ed espressione genica • Penetranza: frequenza (probabilità) che un genotipo esprima il fenotipo (clinico) – la penetranza incompleta di un carattere si manifesta in una proporzione di figli affetti minore di quella attesa dalle proporzioni mendeliane (comunemente il 50% e 25% nei casi di caratteri autosomici rispettivamente dominanti e recessivi) – molte malattie autosomiche dominanti sono a penetranza incompleta: vengono all’osservazione come fenotipi che saltano una generazione – si esprime come una percentuale o una frazione di uno Esempio: la sindrome dell’X Fragile ha una penetranza del 80% (8 su 10 con il genotipo della malattia esprimono il fenotipo) • Espressività: indicazione della natura e gravità del fenotipo a parità di genotipo – individui differenti, pur avendo lo stesso genotipo, possono essere affetti in misura più o meno grave Esempio: la sindrome di Marfan si manifesta con un ampio spettro di gravità clinica
Variabilità di trasmissione ed espressione genica • Pleiotropia: un gene si manifesta in una varietà di effetti fenotipici – anomalie morfologiche, biochimiche, fisiologiche, o cliniche multiple Esempio: la sindrome di Marfan, si manifesta con difetti a carico dello scheletro, del cuore e degli occhi • Eterogeneità genica: lo stesso fenotipo causato da mutazioni a geni diversi – mutazioni in geni che codificano per diverse unità o subunità di una proteina, o per proteine che interagiscono con altre proteine, o che agiscono a stadi diversi di un processo metabolico Esempio della Osteogenesis Imperfecta (OI), La tripla elica del collagene di tipo I è formata da 2 catene a1 (codificate sul cromosoma 17) and 1 catena a2 (codificata sul cromosoma 7). Mutazioni nei geni che modificano la produzione o la struttura di queste catene danno luogo a diversi tipi clinici di OI.
The Marfan syndrome and related connective tissue disorders affect at least 200,000 people in the United States. Because connective tissue is the glue and scaffolding of the entire body, the disorder may affect the bones and ligaments, eyes, heart and blood vessels. It is the effect on the aorta, the largest blood vessel carrying blood away from the heart, that can be fatal. With an early diagnosis, proper treatment and a modified lifestyle, most people with the Marfan syndrome can hope to live a normal lifespan. http://www.marfan.org
Variabilità di trasmissione ed espressione genica • Eterogeneità allelica: lo stesso fenotipo causato da mutazioni diverse nello stesso gene – comune perché molte malattie sono causate da mutazioni che inducono una perdita di funzione (ogni mutazione che impedisce la produzione o la funzione del prodotto genico) Esempi: ipercolesterolemia famigliare, varie mutazioni a livello del gene del recettore LDL provocano la perdita di recettori funzionali con conseguente accumulo di colesterolo b- talassemia, a produrre questo fenotipo sono molte mutazioni diverse nel gene della b-globina
Variabilità di trasmissione ed espressione genica • Anticipazione: il fenomeno per cui l’età di insorgenza di una malattia diminuisce e/o la gravità del fenotipo aumenta da una generazione all’altra Esempi: malattia di Huntington’s, distrofia muscolare miotonica, sindrome da X fragile (nella maggior parte dei casi è il risultato della espansione da ripetizione di triplette nucleotidiche) • Imprinting: espressione del carattere genetico che è diversa a seconda se sia stato trasmesso l’allele materno o paterno – determinato soprattutto da una diversa metilazione del DNA nella linea germinale Esempi: le sindromi di Prader-Willi e Angelman
Malattie associate ad espansioni ripetute di trinucleotidi Le espansioni ripetute di trinucleotidi interferiscono con l’espressione del gene o della proteina codificata
Malattie del sistema muscolare e del sistema nervoso periferico
Il fenomeno dell’anticipazione Da una generazione all’altra l’età di insorgenza diminuisce e la gravità della malattia aumenta
Espansione delle ripetizioni nella distrofia miotonica (AD, 1/10.000)
Malattie del sistema nervoso centrale
Compensazione di dose
TUTTI gli individui con monosomie autosomiche muoiono, MA gli individui XO spesso sopravvivono e possono essere relativamente normali: sono presenti fattori che rendono molto diversi i cromosomi autosomici da quelli sessuali.
Un’altra differenza tra cromosomi autosomici e cromosomi sessuali: Le trisomie autosomiche sono letali, ma le aneuploidie XXY, XYY, XXX, XXXX e XXXXX possono non essere letali.
Il numero di corpi di Barr varia con il numero di cromosomi X XX Un corpo di Barr XXX Due corpi di Barr
Cariotipo N.ro corpi di Barr XY 0 XO 0 XX 1 XXX 2 XXXX 3 XXXXX 4
Nel 1961 Mary Lyon propose che nei mammiferi, la dose di prodotti genici sia stata resa identica nei maschi e nelle femmine inattivando casualmente uno dei due cromosomi X nelle femmine. Il cromosoma X inattivo è il corpo di Barr. Questo meccanismo di compensazione genica è spesso chiamato l’ipotesi di Mary Lyon.
Nelle femmine dei mammiferi, ai primi stadi dello sviluppo embrionale, in ciascuna cellula uno dei due cromosomi X viene inattivato
Le cellule delle femmine dei mammiferi costituiscono dei mosaici Queste cellule esprimono solo i geni del cromosoma X paterno. Queste cellule esprimono solo i geni del cromosoma X materno.
Esempio: displasia ectodermica anidrosica Certi caratteri ereditari concatenati al cromosoma X si esprimono nelle femmine come mosaicismi. Esempio: displasia ectodermica anidrosica
Sindrome dell’ X fragile
Sindrome dell’ X fragile
La malattia di Huntington
L’ imprinting genomico: sindrome di Prader-Willi
L’ imprinting genomico: sindrome di Angelman
L’ imprinting genomico: la delezione del tratto 15q11-13
Variabilità di trasmissione ed espressione genica • Patologie da geni contigui: microdelezioni che coinvolgono molti geni contigui, combinando così i segni di due o più malattie ereditarie monofattoriali Esempi: WAGR (Wilms’ tumor, Aniridia, anomalie del tratto Genitorurinario, Ritardo mentale, microdelezione in 11p) CATCH22 (Cardiac defect, Abnormal facies, Thymic hypoplasia, Cleft palate, Hypocalcemia, una delezione in 22q11, incidenza 1/5000, ~5% di tutti i difetti cardiaci congeniti) • Fenocopie: fenotipi simili a malattie genetiche ma causati da fattori non genetici Esempio: sordità causata da infezione di rosolia in utero
Variabilità di trasmissione ed espressione genica • Mutazioni nuove o “de novo”: generalmente identificate nelle malattie dominanti o recessive X-linked, molto raramente producono malattie autosomiche recessive (entrambe le copie del gene devono essere mutate) – il rischio di ricorrenza è basso, ma leggermente superiore all’incidenza della malattia nella popolazione a causa del mosaicismo della linea germinale
Analisi di alberi genealogici (1) Trasmissione verticale o orizzontale: criterio indicativo, ma non è una regola assoluta Trasmissione verticale, cioè generazioni successive con individui affetti, trasmissione ereditaria potenzialmente DOMINANTE Trasmissione orizzontale, cioè presenza di molti individui affetti all’ interno di una generazione, ma pochi nella generazione precedente o successiva (salto di una generazione), trasmissione ereditaria potenzialmente RECESSIVA
Analisi di alberi genealogici (2) • Rapporto maschi affetti su femmine affette – più maschi affetti nelle malattie recessive X-linked – solo maschi affetti nelle malattie Y-linked • Dall’individuo affetto si esamini l’albero verso le generazioni precedenti e seguenti – femmine non affette che trasmettono la malattia al 50% dei maschi, sono probabili portatori: la trasmissione è verosimilmente X-linked recessiva – maschi affetti che trasmettono la malattia a tutte le figlie femmine: la trasmissione è verosimilmente X-linked dominante – maschi che trasmettono la malattia a tutti i figli maschi e non alle figlie femmine: la trasmissione è verosimilmente Y-linked
Analisi di alberi genealogici: eredità autosomica dominante – se un genitore è affetto, in media il 50% dei figli sarà affetto – se la penetranza del carattere è completa (100%), i figli di genitori non affetti non sono a rischio di essere affetti – se un individuo affetto non ha genitori affetti e la penetranza del carattere è completa, l’individuo ha una nuova mutazione, i suoi figli avranno un rischio del 50% di essere affetti se la mutazione è nella linea germinale, ma i figli successivi avranno un basso rischio di ricorrenza – gli individui affetti sono generalmente eterozigoti, in quanto gli omozigoti affetti sono molto più rari
Eredità autosomica dominante Se un genitore è normale (bb) e l’altro è affetto (Bb) da una malattia autosomica dominante, il 50% dei figli sarà eterozigote affetto (Bb), ed il 50% sarà omozigote normale (bb). Nelle malattie autosomiche dominanti, la lettera maiuscola indica il gene che dà la malattia: un solo gene dannoso dà origine la fenotipo affetto Qual è la probabilità di essere affetto un figlio di entrambi i genitori affetti da una malattia autosomica dominante ed entrambi eterozigoti?
Eredità autosomica dominante Se entrambi i genitori sono affetti (Bb) da una malattia autosomica dominante, allora il 75% dei figli sarà affetto (BB or Bb), e il 25% sarà omozigote normale (bb). Nota: è raro che un individuo affetto da una malattia autosomica dominante sia omozigote per il gene che dà la malattia.
Analisi di alberi genealogici: malattia autosomica recessiva – genitori e figli degli individui affetti sono portatori OBBLIGATI – il rischio di essere un portatore si divide per 2 ad ogni generazione (seguente e precedente quella del portatore accertato) – la maggior parte degli omozigoti affetti sono figli di matrimoni tra due individui portatori (eterozigoti) che generano figli: 1/4 affetti, 2/4 portatori, 1/4 omozigoti normali – i fratelli non affetti hanno una probabilità di 2/3 di essere portatori (1 omozigote normale + 2 portatori =3 non affetti) – le nuove mutazioni sono rare – se la malattia è rara, si può assumere che le persone al di fuori della famiglia siano omozigoti normali, o si può usare la frequenza dei portatori nella popolazione
Eredità autosomica recessiva Se un genitore è normale (AA) e l’altro è portatore (Aa), allora il 50% in media dei figli sarà omozigote normale (AA), e l’altro 50% sarà portatore eterozigote non affetto (Aa). Non vi sono figli affetti. Nel caso di malattie autosomiche recessive, le lettere minuscole stanno ad indicare i geni che in omozigosi danno la malattia, perché entrambi i geni devono essere mutati perché si osservi il fenotipo patologico. Qual è la probabilità di avere un figlio affetto se entrambi i genitori sono portatori?
Eredità autosomica recessiva Se entrambi i genitori sono portatori sani (Aa), il 25% in media dei figli sarà omozigote normale (AA), il 50% sarà eterozigote non affetto (Aa), e il 25% sarà omozigote affetto (aa). Se un genitore è un portatore sano (Aa) e l’altro è affetto (aa), allora il 50% in media dei figli sarà eterozigote non affetto (Aa), e l’altro 50% sarà omozigote affetto affected (aa).
Probabilità di essere portatori di una malattia autosomica recessiva La probabilità di essere portatore (eterozigote) di una malattia autosomica recessiva si deriva conoscendo che il probando nella generazione IV è affetto dalla malattia. I genitori nella generazione III ed i figli nella generazione V sono portatori “obbligati” della malattia.
Analisi di alberi genealogici: malattia autosomica recessiva Qual è la probabilità di un figlio affetto se entrambi i genitori sono normali: probabilità padre portatore x probabilità madre portatrice x 1/4 (probabilità che il figlio sia affetto) =_____ Se la frequenza dei portatori sani nella popolazione è il 2% (2/100 or 1/50) La sorella affetta indica che i genitori sono portatori obbligati, sicchè il fratello ha una probabilità di 2/3 di essere un portatore e la sua partner ha la probabilità di essere portatrice pari a quella dei portatori sani nella popolazione, il 2%. Il rischio di malattia per il figlio ? È allora: 2/3 x 1/50 x 1/4 = 1/300
Analisi di alberi genealogici: malattia autosomica recessiva Qual è la probabilità di essere affetto per un figlio di genitore affetto: Probabilità che un genitore non affetto sia portatore x 1/2 = Qual è la probabilità di essere affetto per un figlio di entrambi i genitori affetti : 100% Eccetto che nei casi di eterogeneità genetica, in cui il figlio può essere un doppio eterozigote non affetto Per esempio la sordità profonda è una malattia autosomica ressiva. Un genitore è sordo a causa del gene mutato a (genotipo aa, BB), l’altro genitore è sordo a causa del gene mutato b (genotipo AA, bb). Qual è il genotipo del figlio e qual è la sua probabilità di esser sordo?
Analisi di alberi genealogici: eredità X-linked recessiva Il gene che dà la malattia è trasmesso dal cromosoma X: dalle madri passa ai figli maschi e alle figlie, e dai padri alle figlie ma non ai figli maschi – i maschi non affetti non hanno il gene che dà la malattia (non possono essere portatori) – la madre di un figlio maschio affetto è portatore obbligato, a meno che il figlio abbia una nuova mutazione – mutazioni nuove sono comune per molte malattie recessive X- linked – tutte le figlie di un padre affetto ed il 50% delle figlie di na madre portatrice, sono portatrici – discendendo di generazione in generazione nell’albero genealogico sulla linea femminile, il rischio di essere portatrice si dimezza ad ogni generazione
Eredità X-linked recessiva normale (XHY) x portatrice sana (XHXh) 50% femmine, normali 50% femmine, portatrici 50% maschi, normali 50% maschi, affetti Qual è la probabilità di generare un figlio maschio affetto se il padre è affetto?
Eredità X-linked dominante affetti (XBY) x normali (XbXb) 100% femmine, affette 100% maschi, normali normali (XbY) x affette (XbXB) 50% femmine, normali 50% femmine, affette 50% maschi, normali 50% maschi, affetti
affetti (X Y) x normali (X X) Eredità Y-linked dominante affetti (X Y) x normali (X X) 100% femmine, normali 100% maschi, affetti