Tano Cavattoni L’Universo Età 13,7 miliardi di anni 1.

Slides:



Advertisements
Presentazioni simili
TRA STELLE e GALASSIE.
Advertisements

L’EVOLUZIONE DELLE STELLE
ASTRONOMIA E’ lo studio dei corpi celesti presenti nell’Universo.
Relatore: Enrico Ronchi, responsabile tecnico di Arcturus.
Lezioni di Astronomia 3- Le stelle Bologna 8 aprile 2010
Tano Cavattoni L’Universo Età 13,7 miliardi di anni.
Lic. Classico “D. A. Azuni”
Astronomia 1.
L’UNIVERSO L’universo è l’insieme di tutti corpi celesti
Dalla temperatura superficiale di una stella dipende
Evoluzione cosmica - stellare Colore e luminosità delle stelle evoluzione delle stelle sequenza principale.
LA MISURA DELLE DISTANZE NELL’UNIVERSO
Le stelle.
Leggi di Keplero.
Per il 75% idrogeno Per il 20% elio Per il 5% altri elementi (Stella di II generazione)
L’Universo è tutto ciò che esiste, lo spazio, il tempo e tutta la materia e l’energia che essi contengono. L’Universo è straordinariamente grande, non.
Luigi A. Smaldone Dipartimento di Fisica
Presentazione a cura di :
dalle stelle alle galassie
INAF-Osservatorio Astronomico di Brera
Reazioni nucleari nelle stelle
Evoluzione cosmica - stellare
Formulario.. Centola Angela Toscano Marianna Cirillo Pasquale.
LE DISTANZE ASTRONOMICHE
Oltre il Sistema solare… uno sguardo all’Universo
Leggerezza & Rapidità.
La Visibilità Delle Stelle
Direttore dellOsservatorio del Collegio Romano Bianco-azzurre Sirio Gialle Sole Rosso-arancio Aldebaran Capì che le differenze di colore indicano.
Dipartimento di Fisica - Università di Napoli Federico II
Powerpoint sulle stelle e la loro vita
L’UNIVERSO L’ universo è tutto ciò che esiste: lo spazio, il tempo e tutta la materia l’ energia che essi contengono. L ‘ universo è straordinariamente.
L 'UNIVERSO.
BIANCA AMBROSINI & FRANCESCO MARINI Classe 3° B Un test creato da:
Esercizi ISM.
L’essenziale è invisibile agli occhi “Antoine de Saint-Exupérie”
Curiel, 1/11/2004 Alessandro Pizzella – Dipartimento di Astronomia – Università di Padova.
Studio delle galassie M 82 e ARP63
7/10 FEBBRAIO 2007 II STAGE POLO DI PADOVA.
LA NOSTRA GALASSIA La VIA LATTEA 1 parsec= Km 1 parsec=3.26 anni luce alone disco Sole nucleo.
IL FILE CONTIENE MUSICA
Astronomia.
Indici di colore IC = m1 - m2 U-B = mU - mB B-V = mB – mV
La Scala delle distanze
Dipartimento di Astronomia
Misura del tasso di formazione stellare nella galassia
Cinematica di Galassie
IL CIELO COME LABORATORIO – EDIZIONE 2006/2007 Stima dellestinzione galattica in stelle con righe demissione Sara Gris, Mattia Dazzi, Matteo Gallo Liceo.
Il Sole è la stella a noi più vicina, tutte le altre stelle sono così lontane da apparirci come puntini luminosi, in ogni caso si tratta di sfere.
Evoluzione cosmica - stellare
ASTRONOMIA E’ lo studio dei corpi celesti presenti nell’Universo.
Il Diagramma HR di Hertzsprung-Russell (Evoluzione Stellare Parte IV)
L’analisi della luce degli astri: fotometria e spettrometria
Tano Cavattoni L’Universo Età 13,7 miliardi di anni.
Stelle: corpi celesti di grandi dimensioni che emettono energia e brillano di luce propria; sono formate da gas (idrogeno ed elio) ad altissima temperatura.
La Misura del Mondo 5 - Oltre il sistema solare
La Fine di una Stella Le Giganti Rosse (Evoluzione Stellare Parte VI)
Le stelle.
LE STELLE.
DIAGRAMMA HR il diagramma di Herzsprung & Russel
Lanciano, 24 Aprile 2009 L’Universo lontano - Cosmologia Corso di Astronomia V Lezione L’Universo lontano - Cosmologia.
I corpi celesti La luce del Sole è in realtà composta di una mescolanza di luce di svariati colori, che sono anche i colori dell'arcobaleno. L’insieme.
LE STELLE E LA SFERA CELESTE Il cielo veniva raffigurato dagli antichi come una grande cupola sferica, la “volta celeste”. Gli oggetti che spiccano nel.
LE STELLE E IL SISTEMA SOLARE. I principali corpi celesti Stelle Pianeti Nebulose Galassie Satelliti.
Lanciano, 16 Marzo 2011 Spazio profondo: nebulose e galassie Avvio all’Astronomia IV° Incontro Spazio profondo: Nebulose e galassie.
1 Il diagramma H-R Il diagramma Hertzsprung-Russel rende visibile la relazione fra il tipo spettrale di una stella e la sua luminosità. Le stelle si addensano.
Diagramma H-R. I Diagrammi HR La scoperta più importante in campo astronomico risale al 1913, quando il danese Enjar Hertzsprung e l’americano Henry Norris.
Unità Didattica 4 Le Magnitudini, i Colori e gli Spettri delle Stelle
Vita delle stelle.
Classificazione delle stelle
Transcript della presentazione:

Tano Cavattoni L’Universo Età 13,7 miliardi di anni 1

Capitolo 9 L’universo vicino Tutti gli astri [...] dei quali non si scorge alcun movimento e che scintillano, sono fuochi ossia soli; secondo le dovute proporzioni, è da ritenere coerente che, come questo Sole si muove tra le sue terre, così anche quelli si muovano fra le terre. Le loro terre non sono visibili a causa della rilevante distanza. Giordano Bruno 2 2

§ 9.2 Classificazione delle stelle Classificazione per magnitudine Ai tempi di Ipparco (II sec. a.C.) le stelle erano state suddivise i 6 classi in base alla magnitudine apparente, ossia per la luminosità apparente: Atlante sostiene il cielo di Ipparco 1^ magnitudine: le prime stelle che appaiono dopo il tramonto; 6^ magnitudine: le stelle visibili solo nelle notti più buie. 3 3

§ 9.2 Classificazione delle stelle Classificazione per magnitudine Nel 1856 l’astronomo inglese Pogson propose una formula che esprime in modo oggettivo la relazione fra magnitudine (m) e intensità luminosa (I) da noi percepita: m = –2,5 log(I) + k* * log: è il logaritmo in base 10; k: è una costante per la taratura della scala. 4 4

§ 9.2 Classificazione delle stelle In Orione: Betelgeuse: 0,50m Bellatrix: 1,64m HP 25028: 5,65m Alnitak: 1,85m Rigel: 0,12m Saiph: 2,06m La magnitudine cresce al diminuire della luminosità 5 5

§ 9.2 Classificazione delle stelle Classificazione di Harvard È una classificazione spettrale basata sulle caratteristiche fisiche delle stelle. Ogni stella emette dalla fotosfera uno spettro continuo come quello di un corpo nero. L’atmosfera della stella, in relazione alla propria composizione e alla temperatura, è in grado di assorbire determinate lunghezze d’onda. Lo spettro in assorbimento è la carta d’identità della stella. 6 6

§ 9.2 Classificazione delle stelle Classificazione di Harvard Le righe spettrali raccontano agli scienziati quali elementi compongono l’atmosfera stellare, qual è la temperatura, la densità o il livello di ionizzazione. Ecco una parte dello spettro del Sole (380 nm < λ < 550 nm). Calcio Hβ Magnesio 7 7

§ 9.2 Classificazione delle stelle Classificazione di Harvard In base alle caratteristiche dello spettro e in ordine decrescente di temperatura sono state individuate 7 classi spettrali: O, B, A, F, G, K, M. 8 8

§ 9.2 Classificazione delle stelle Classificazione di Harvard Nelle classi spettrali si hanno diverse intensità delle righe in assorbimento: Ad alte temperature sono intense le righe degli elementi ionizzati. A basse temperature sono intense le righe delle molecole. Temperatura 9 9

§ 9.2 Classificazione delle stelle Classificazione di Harvard Ogni classe spettrale è poi suddivisa in ulteriori 10 sottoclassi numerate da 0 a 9, sempre in ordine decrescente di temperatura: O0, O1, O2,...O9, B0, B1, eccetera. Il tipo spettrale è la caratteristica comune alle stelle che appartengono alla stessa classe spettrale. Si dice quindi che nostro Sole è una stella di tipo spettrale G2 o, semplicemente, di classe spettrale G2. Per memorizzare facilmente l’ordine delle classi spettrali gli studenti delle università statunitensi hanno inventato la seguente filastrocca: «Oh, Be A Fine Girl, Kiss Me». 10 10

§ 9.3 Parametri fisici delle stelle: massa, luminosità, dimensione La massa (m) è un parametro determinante per la durata della vita di una stella. I valori sono molto diversi fra loro: 0,08 m < m < 120 m* * m = massa del Sole • Le stelle con massa maggiore hanno vita più breve. • Le stelle con massa minore hanno vita più lunga. 11 11

§ 9.3 Parametri fisici delle stelle: massa, luminosità, dimensione Le stelle note hanno luminosità L, detta anche luminosità intrinseca, molto diverse fra loro: * L = luminosità del Sole 10–5 L < L < 105 L* Per confrontare la luminosità delle stelle si utilizza anche la magnitudine assoluta (M): la magnitudine (apparente) che la stella avrebbe se si trovasse alla distanza di 10 pc (32,6 a.l.), supponendo nullo l’assorbimento da parte del mezzo interstellare. 12 12

§ 9.3 Parametri fisici delle stelle: massa, luminosità, dimensione La magnitudine apparente non permette il confronto di luminosità fra le stelle. Il confronto è invece possibile ricorrendo alla magnitudine assoluta. Magnitudini apparenti e assolute (fra parentesi) di alcune stelle. NB La magnitudine cala al crescere della luminosità. 13 13

§ 9.3 Parametri fisici delle stelle: massa, luminosità, dimensione Fra i parametri magnitudine apparente (m), magnitudine assoluta (M) e distanza della stella (d, espressa in parsec) intercorre la seguente relazione: M = m + 2,5 log(102/d2) da cui, note M e m, si può ricavare la distanza d: d = 10(m – M +5)/5 14 14

§ 9.3 Parametri fisici delle stelle: massa, luminosità, dimensione Le stelle, che appaiono puntiformi a qualsiasi telescopio, hanno dimensioni diverse tra loro. I possibili valori del raggio R: 10–1 R < R < 103 R*. * R = raggio del Sole Confronto fra le dimensioni di alcune stelle. 15 15

§ 9.4 Il diagramma H-R Il diagramma Hertzsprung-Russel rende visibile la relazione fra il tipo spettrale di una stella e la sua luminosità. Le stelle si addensano in alcune regioni. La sequenza principale Attraversa il diagramma in diagonale e contiene la maggior parte delle stelle che osserviamo in cielo: le stelle nella fase stabile della loro vita, durante la quale convertono in elio l’idrogeno del nucleo. Il Sole è vicino al centro della sequenza principale 16 16

§ 9.4 Il diagramma H-R Il diagramma Hertzsprung-Russel rende visibile la relazione fra il tipo spettrale di una stella e la sua luminosità. Le stelle si addensano in alcune regioni. Le supergiganti Sono stelle fuori dalla sequenza principale e si trovano in tutte le classi spettrali. Hanno massa superiore alle 10 m, e luminosità fino a 105 volte quella del Sole. 17 17

§ 9.4 Il diagramma H-R Il diagramma Hertzsprung-Russel rende visibile la relazione fra il tipo spettrale di una stella e la sua luminosità. Le stelle si addensano in alcune regioni. Le giganti Sono le stelle fra la regione selle supergiganti e la sequenza principale. Hanno dimensioni 50 volte superiori a quelle del Sole e luminosità fino a migliaia di volte quella del Sole. 18 18

§ 9.4 Il diagramma H-R Il diagramma Hertzsprung-Russel rende visibile la relazione fra il tipo spettrale di una stella e la sua luminosità. Le stelle si addensano in alcune regioni. Le nane bianche Sono stelle nella fase finale dell’evoluzione. Hanno massa inferiore a 1,44 m, dimensioni molto ridotte e densità elevate. La luminosità va da 10–4 a 10–6 volte quella del Sole. 19 19

Sono collezioni di stelle legate gravitazionalmente. § 9.8 Gli ammassi stellari Sono collezioni di stelle legate gravitazionalmente. Ammassi aperti Ammassi globulari Formati principalmente da giovani stelle della sequenza principale, si trovano nei bracci di spirale. Contengono soprattutto stelle piuttosto vecchie e si trovano nell’alone galattico. 20 20

21 21