Esempio 1 Un blocco di massa m scivola lungo una superficie curva priva di attrito come in figura. In ogni istante, la forza normale N risulta perpendicolare.

Slides:



Advertisements
Presentazioni simili
Agenda di oggi Lavoro ed energia *Lavoro fatto da più forze costanti
Advertisements

HALLIDAY - capitolo 5 problema 19
HALLIDAY - capitolo 7 problema 11
A. Stefanel - M - L'energia meccanica
Esercizi sulla conservazione dell’energia
Principio di conservazione della quantità di moto
Primo principio della dinamica
CAMPO ELETTRICO E POTENZIALE
Applicazione h Si consideri un punto materiale
Le forze conservative g P2 P1 U= energia potenziale
Il lavoro [L]=[F][L]=[ML-2T -2] S.I.: 1 Joule = 1 m2 kg s-2
Un corpo di massa m= 0.5 kg, che si muove su di un piano orizzontale liscio con velocità v=0.5 m/s verso sinistra, colpisce una molla di costante elastica.
Una sfera di raggio r =1 m è poggiata su un piano orizzontale e mantenuta fissa. Un cubetto di piccole dimensioni è posto in equilibrio instabile sulla.
Lavoro di una forza costante
Un proiettile di massa 4.5 g è sparato orizzontalmente contro un blocco di legno di 2.4 kg stazionario su una superficie orizzontale. Il coefficiente di.
G. Pugliese, corso di Fisica Generale
La quantità di moto La quantità di moto di un sistema di punti materiali si ottiene sommando le quantità di moto di ciascun punto materiale Ricordando.
I diagramma del corpo libero con le forze agenti
Una sfera di raggio r =1 m è poggiata su un piano orizzontale e mantenuta fissa. Un cubetto di piccole dimensioni è posto in equilibrio instabile sulla.
Consigli per la risoluzione dei problemi
Il lavoro dipende dal percorso??
G.M. - Edile A 2002/03 Appli cazio ne Si consideri un punto materiale –posto ad un altezza h dal suolo, –posto su un piano inclinato liscio di altezza.
G.M. - Informatica B-Automazione 2002/03 Estensione della conservazione dellenergia ai sistemi di punti materiali Se tutte le forze interne ed esterne.
G.M. - Edile A 2002/03 Appli cazio ne Si consideri un punto materiale –posto ad un altezza h dal suolo, –posto su un piano inclinato liscio di altezza.
Lezione 4 Dinamica del punto
Physics 2211: Lecture 22, Pg 1 Agenda di oggi Dinamica del centro di massa Momento lineare Esempi.
Agenda di oggi Lavoro e energia *Review
CINEMATICA DINAMICA ENERGIA. Cosa rappresenta la linea a ? a LO SPAZIO PERCORSO LA TRAIETTORIA LA POSIZIONE RAGGIUNTA ……………...
LAVORO di una forza costante
Esempio Un disco rigido omogeneo di massa M=1,4kg e raggio R=8,5cm rotola su un piano orizzontale alla velocità di 15cm/s. Quale è la sua energia cinetica?
Corso di Fisica - Lavoro ed energia
Diagramma di corpo libero
GLI URTI IN UNA DIMENSIONE
PRIMO PRINCIPIO DELLA DINAMICA
Meccanica 8. L’energia (I).
Meccanica I moti rettilinei
Una piccola sfera di massa m è vincolata da una cordicella leggera ed inestensibile a muoversi su una traiettoria circolare di raggio R su un piano orizzontale.
L’ENERGIA Lavoro Energia Conservazione dell’energia totale
Esercizio In un ambiente in cui è stato fatto il vuoto lascio cadere in caduta libera da una stessa altezza una piuma di 10 g, una sfera di legno di 200.
Fisica - M. Obertino Quesito 1 Nel S.I. l’unità di misura del potenziale è [a] W [b] C [c] F [d] Ω [e] nessuna delle altre risposte è corretta.
Fisica - M. Obertino Quesito 1 Quale fra quelle indicate di seguito non rappresenta un’unità di misura dell’energia? [a] Joule [b] Watt  s [c] Caloria.
Esempio -1 Individuare il centro di massa di un sistema di tre particelle di massa m1 = 1kg, m2 = 2 kg, e m3 = 3kg, poste ai vertici di un triangolo.
Esempio 1 Un blocco di massa m = 10kg deve essere trasportato dalla base all’estremità superiore di un piano inclinato, percorrendo 5 m sul piano inclinato,
LEVE Applicazione delle proprietà delle leve nella vita pratica.
La Legge di conservazione dell’energia
Prof. Roberto Capone Lavoro ed energia
Lavoro ed Energia.
Esempio 1 Una palla avente una massa di 100 gr viene colpita da una mazza mentre vola orizzontalmente ad una velocità di 30 m/s. Dopo l’urto la palla.
Esempio 2 Consideriamo una molla attaccata al soffitto con un peso agganciato all’estremità inferiore in condizioni di equilibrio. Le forze esercitate.
Esercizi (attrito trascurabile)
E n e r g i a.
ENERGIA POTENZIALE Il lavoro compiuto da una forza è definito dalla relazione e nel caso della forza di attrito dinamico il suo valore dipende dalla lunghezza.
1 Lezione VII Avviare la presentazione col tasto “Invio”
1 Lezione IX seconda parte Avviare la presentazione col tasto “Invio”
1 Lezione XIII – terza parte Avviare la presentazione col tasto “Invio”
1 Lezione XII-b Avviare la presentazione col tasto “Invio”
1 Lezione VI – seconda parte Avviare la presentazione col tasto “Invio”
1 Lezione IX – quarta parte Avviare la presentazione col tasto “Invio”
1 Lezione VI Avviare la presentazione col tasto “Invio”
1 Lezione IX Avviare la presentazione col tasto “Invio”
Esercizio-Tre blocchi di massa rispettivamente m 1 =5Kg, m 2 =2 Kg e m 3 =3Kg poggiano su un piano orizzontale e sono uniti da due funi (vedi figura).
Prof.ssa Veronica Matteo
LAVORO E ENERGIA. LAVORO Il lavoro prodotto da una forza F su un corpo, è dato dal prodotto tra la componente della forza Fs, lungo lo spostamento e lo.
Transcript della presentazione:

Esempio 1 Un blocco di massa m scivola lungo una superficie curva priva di attrito come in figura. In ogni istante, la forza normale N risulta perpendicolare alla superficie e quindi alla direzione del moto e pertanto NON esegue lavoro. Soltanto la forza gravitazionale compie lavoro e questa forza è conservativa. Pertanto l’energia meccanica si conserva e scriveremo: mgy1 + ½ mv12 = mgy2 + ½ mv22 Da cui si ricava: v22 = v12 + 2 g (y2 – y1) Se il blocco inizialmente è a riposo ad una quota y = h, si ha quindi: v2 = (2 g h)½

Esempio 2 Supponiamo di disporre di una molla con costante elastica k = 800 nt/m, posizionata come in figura. Supponiamo di comprimere la molla di 0,05 m rispetto alla posizione di equilibrio e di porre davanti la molla un biglia di 0,02 kg. Facendo l’ipotesi che la superfice orizzontale sia priva di attrito, con quale velocità la palla si distaccherà dalla molla ?

Trattandosi di una forza conservativa (la forza esercitata dalla molla), l’energia meccanica si conserva. L’energia meccanica iniziale è l’energia potenziale della molla: ½ k x2 L’energia meccanica finale è l’energia cinetica della biglia: ½ mv2 Pertanto scriveremo : ½ k x2 = ½ mv2 Da cui risulta: v = x (k/m)1/2 = 0,05m x ((800 nt/m)/0,02 kg)1/2 v = 10 m/s

Esempio 3 Consideriamo un pendolo semplice. Il moto si svolge nel piano x-y, si tratta cioè di un moto bidimensionale. La tensione del filo è sempre perpendicolare alla traiettoria della massa m per cui tale forza non compie lavoro. Se il pendolo viene spostato di un angolo θ dalla sua posizione di equilibrio e poi lasciato libero, soltanto la forza gravitazionale compie lavoro sulla massa m. Poiché si tratta di una forza conservativa, possiamo applicare la legge di conservazione dell’energia in due dimensioni e scrivere: ½ mvx2 + ½ mvy2 + U(x,y) = E y x

½ mvx2 + ½ mvy2 + U(x,y) = E Possiamo porre: vx2 + vy2 = v2 dove v è la velocità lungo l’arco Inoltre U = m g y dove l’origine dell’asse y coincide col punto più basso Quindi: ½ mv2 + m g y = E Quando posizioniamo la massa ad un angolo θ ed un’altezza h, la sua energia cinetica è nulla, quindi: E = m g h In ogni punto sarà quindi: ½ mv2 + m g y = m g h  ½ mv2 = m g (h –y) Quindi la velocità massima si ha per y = 0 ed è v = (2 g h)1/2 La velocità minima risulta in y = h dove v = 0

= (10kg) (9,8 m/s2) (2m) (cos 60°) = 98 joule Esempio 4 Un blocco di 10 kg viene lanciato in salita lungo un piano inclinato di 30° con una velocità inziale di 5 m/s. Il blocco percorre 2 m, si ferma e poi ritorna alla base. Quesito: Calcolare la velocità con cui il blocco ritorna alla base, e la forza d’attrito f. Quando siamo alla sommità del moto, l’energia cinetica è zero, mentre l’energia potenziale è data dal lavoro esercitato contro la forza di gravità, a scapito appunto dell’energia cinetica. U = m g h = = (10kg) (9,8 m/s2) (2m) (cos 60°) = 98 joule 2 m 30° Alla base, dove il moto è iniziato è U = 0 mentre l’energia cinetica era K = ½ m v2 = ½ (10kg) (5 m/s)2 = = 125 joule

98 joule − 125 joule = −f x 2 m U = 98 joule Risulta una differenza netta di energia di 98 joule − 125 joule = −f x 2 m da cui risulta: f = 27 joule / 2 m = 13,5 nt Consideriamo adesso la discesa. Alla sommità avevamo: U = 98 joule La perdita di energia cinetica dovuta all’attrito durante la discesa sarà sempre 27 joule, per cui l’energia cinetica all’arrivo sarà 98 – 27 = 71 joule Da cui ½ m v2= 71 joule  v = (71 x 2 / 10kg)1/2 = 3,7 m/s

Riassumendo: La molla parte con una velocità in salita di 5 m/s Ritorna al punto di partenza con una velocità di 3,7 m/s Questo è dovuto alla perdita netta di energia, che si è trasformata in calore causa dell’attrito sia in andata che in ritorno. Pertanto se quando torna al punto di partenza trova una molla che semplicemente le inverte il moto, risalirebbe ma percorrendo una distanza minore, e arriverebbe al punto di partenza con una velocità sempre più bassa, fino a fermarsi.