EQUILIBRIO CHIMICO.

Slides:



Advertisements
Presentazioni simili
La meraviglia nasce dal desiderio di conoscenza.
Advertisements

EQUILIBRI DI SOLUBILITA’
Classi quarte/quinte Liceo Scientifico Tecnologico
Reazioni dirette e inverse
LICEO SCIENTIFICO STATALE “LEONARDO da VINCI” di FIRENZE
L’EQUILIBRIO CHIMICO Se in una reazione chimica i reagenti si trasformano completamente nei prodotti, si parla di trasformazione irreversibile. Esistono.
Equilibrio chimico Equilibri dinamici Legge azione di massa, Kc, Kp,…
Cinetica chimica Cinetica e termodinamica Velocità di reazione
L’ Equilibrio chimico.
L Equilibrio chimico. N2O4N2O4 incolore L Equilibrio chimico N2O4N2O4 2 NO 2 incolore.
Chimica (Scienze Integrate)
Equilibri chimici Classi quarte/quinte Liceo Scientifico Tecnologico.
TERMODINAMICA.
EQUILIBRIO CHIMICO.
EQUILIBRI DI SOLUBILITA’
U 11 Equilibrio chimico.
AnalisiQualitativa_Orioli(cap2)1 VELOCITA DI REAZIONE ED EQUILIBRI.
La termodinamica chimica si occupa della differenza di energia tra prodotti e reagenti di una reazione, identificati anche come stato finale e stato iniziale.
AA + bB pP + qQ V = -1/a x d[A]/dt = -1/b x d[B]/dt =1/p x d[P]/dt =1/q x d[Q]/dt DEFINIZIONE di velocità di reazione.
AA + bB pP + qQ V = -1/a x d[A]/dt = -1/b x d[B]/dt =1/p x d[P]/dt =1/q x d[Q]/dt DEFINIZIONE di velocità di reazione.
AA + bB pP + qQ V = -1/a x d[A]/dt = -1/b x d[B]/dt =1/p x d[P]/dt =1/q x d[Q]/dt DEFINIZIONE di velocità di reazione.
Lezione X EQUILIBRIO Termodinamica chimica a.a Termodinamica chimica a.a
FATTORI CHE INFLUENZANO LA VELOCITA’ DI UNA REAZIONE CHIMICA
Valitutti, Tifi, Gentile
Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE CINETICA CHIMICA Abbiamo visto che la spontaneità delle reazioni chimiche può.
G = RT ln (Q / K) Q
Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE EQUILIBRIO CHIMICO Una reazione chimica si dice completa (o "che va a completamento")
CARATTERISTICHE FONDAMENTALI DELL’EQUILIBRIO DINAMICO:
Derivate Parziali di una Funzione di più Variabili
Le reazioni spontanee Spesso si associa il concetto di reazione spontanea ad una reazione che produce calore: certamente una reazione di combustione avviene.
Lezione 5.
SO 2(g) + NO 2(g) SO 3(g) + NO (g) e Dalle moli allequilibrio possiamo calcolare la costante. Quando si stabilisce l'equilibrio della reazione SO 2(g)
Equilibrio chimico A B C D b c d a
Secondo principio per una reazione a pressione costante S totale= S ambiente + S reazione= - H/T + S reazione Il disordine dellambiente è incrementato.
17 CAPITOLO L’equilibrio chimico Indice
Velocità di una reazione chimica
Equilibrio chimico in fase gassosa
Lequilibrio chimico Chimica e laboratorio. Novembre 2006 Prof.ssa Silvia Recchia2 Come facciamo a stabilire quando e se una reazione è terminata? Ipotesi:
DIPARTIMENTO DI CHIMICA G. CIAMICIAN – CHIMICA ANALITICA STRUMENTALE CORSO DI LAUREA IN FARMACIA – CHIMICA ANALITICA – CHIMICA ANALITICA STRUMENTALE Equilibri.
Equilibri chimici in soluzione acquosa
Equilibrio chimico N2 + 3 H2  2NH3
Diagrammi di fase Se aumento T, la tensione di vapore aumenta, perché aumentano il numero di molecole allo stato gassoso. Aumentando la superficie del.
I sistemi a più componenti
Equilibrio chimico in fase gassosa
Ambiente: il resto dell’universo che non fa parte del sistema
Ossidante acquista e- dal riducente che perde e-
D6-1) Per quale delle seguenti reazioni la costante di equilibrio dipende dalle unita' di concentrazione?   (a) CO(g) + H2O(g) CO2(g)
Dalla Struttura degli atomi e delle molecole alla chimica della vita
Sistema, Ambiente e Universo
Consideriamo la reazione N2 + 3H2  2 NH3
Il principio di Le Chatelier-Braun
Perché le cose accadono? Cos’è la spontaneità? E’ la capacità di un processo di avvenire «naturalmente» senza interventi esterni In termodinamica, un processo.
cC + dD reaz. reversibile vinv Reagenti (prodotti) Prodotti (reagenti)
Energia libera di Gibbs (G)
Termodinamica: studio dei trasferimenti di energia Termodinamica chimica: 1. variazione di energia associata ad una trasformazione 2. spontaneità di una.
STECHIOMETRIA Punto di partenza: Una reazione chimica bilanciata.
Equilibrio chimico Capitolo 14.
Programma Misure ed Unità di misura. Incertezza della misura. Cifre significative. Notazione scientifica. Atomo e peso atomico. Composti, molecole e ioni.
Principio di Le Chatelier
© Paolo Pistarà © Istituto Italiano Edizioni Atlas CAPITOLO 17 1 Indice 1.Reazioni complete e reazioni reversibiliReazioni complete e reazioni reversibili.
La spontaneità è la capacità di un processo di avvenire senza interventi esterni Accade “naturalmente” Termodinamica: un processo è spontaneo se avviene.
EQUILIBRIO CHIMICO (pag. 378) Una reazione chimica tra i reagenti A e B avviene in modo completo quando al termine della reazione non vi è pi ù traccia.
Equilibrio Omogeneo ed Etereogeneo. Legge di azione di massa Per qualunque reazione aA + bB cC + dD K = [C] c [D] d [A] a [B] b K è la costante di equilibrio.
Le miscele omogenee.
Transcript della presentazione:

EQUILIBRIO CHIMICO

Abbiamo fino ad ora considerato reazioni che vanno totalmente a compimento, come, ad esempio: 2 H2(g) + O2(g)  2 H2O(g) Se mescoliamo due moli di H2 ed una mole di O2 alla fine della reazione si ottengono due moli di H2O mentre sia l’idrogeno che l’ossigeno scompaiono completamente. Esistono però delle reazioni chimiche che si arrestano prima di giungere a compimento. Tale reazioni sono dette reversibili e sono caratterizzate dal fatto che è possibile non solo la reazione diretta dai reagenti ai prodotti ma anche quella inversa dai prodotti ai reagenti. CO(g) + 3H2(g)  CH4(g) + H2O(g) metanazione catalitica CH4(g) + H2O(g)  CO(g) + 3H2(g) reforming con vapore

CO(g) + 3H2(g) CH4(g) + H2O(g) La conseguenza è che, sia nel caso che mettiamo solo i reagenti, che nel caso in cui mettiamo solo i prodotti, nel recipiente di reazione, dopo un certo periodo di tempo si ha la formazione di una miscela di reagenti e prodotti in concentrazioni definite e costanti nel tempo. Si dice che la miscela di reazione ha raggiunto l’equilibrio chimico. Tale situazione è un equilibrio dinamico: la reazione diretta e quella inversa continuano ad avvenire con velocità uguali. Reazioni di questo tipo sono scritte con una doppia freccia: CO(g) + 3H2(g) CH4(g) + H2O(g)

moli tempo CO(g) + 3H2(g) CH4(g) + H2O(g) Per questa reazione supponiamo di introdurre in un recipiente 1 mole di CO e 3 moli di H2 e di seguire la variazione temporale del numero di moli dei vari composti. moli tempo 1 2 3 Inizialmente si ha una diminuzione dei reagenti e un aumento dei prodotti, ma dopo un certo periodo di tempo le moli (e quindi anche le concentrazioni) di tutti i componenti raggiungono dei valori costanti. H2 CO H2O=CH4

CO(g) + 3H2(g) CH4(g) + H2O(g) La diminuzione delle moli dei reagenti e gli aumenti delle moli di prodotti sono vincolate dai rapporti stechiometrici. moli tempo H2 3 2 3 moli H2 scomparse = 1 mole CO scomparsa = 1 mole CH4 formata = 1 mole H2O formata CO 1 H2O=CH4

  c C + d D a A + b B a temperatura costante! Consideriamo la generica equazione:   a A + b B c C + d D Definiamo costante di equilibrio Kc (in termini di concentrazioni): a temperatura costante! Tale relazione è nota come legge di azione di massa In un equilibrio chimico è costante, a temperatura costante, il rapporto fra il prodotto delle concentrazioni delle specie formate nella reazione e l’analogo prodotto relativo alle specie di partenza ancora presenti, ciascuna concentrazione essendo elevata ad una potenza uguale al coefficiente stechiometrico della specie nella equazione di reazione. Le concentrazioni nell’espressione sopra sono riferite all’equilibrio.

  Costante di equilibrio Kp a A(g) + b B(g) c C(g) + d D(g) Per gli equilibri in fase gassosa è spesso utile scrivere la costante di equilibrio in termini delle pressioni parziali dei gas invece che delle concentrazioni. Ad esempio per la generica reazione: Tale costante è definita come:   a A(g) + b B(g) c C(g) + d D(g)

KP=Kc (RT)n n=c+d-a-b Supponendo che tutti i gas siano ideali è possibile ricavare la relazione tra KP e KC. Si ha infatti: Da cui KP=Kc (RT)n n=c+d-a-b

Equilibri eterogenei Abbiamo finora considerato solo equilibri omogenei, cioè equilibri in cui reagenti e prodotti si trovano tutti in una sola fase (ad esempio gassosa, oppure in soluzione). Un equilibrio eterogeneo è invece un equilibrio in cui reagenti e prodotti si trovano in più di una fase. Nell’espressione della costante di equilibrio di un equilibrio eterogeneo vengono omesse le concentrazioni (o le pressioni parziali nel KP) dei solidi e dei liquidi puri. 3Fe(s) + 4H2O(g) Fe3O4(s) + 4H2(g)

CaCO3(s) CaO(s) + CO2(g) KC=[CO2] KP=PCO2 Esempio Si noti che in questo caso particolarmente semplice se ad un recipiente contenente CaCO3,CaO e CO2 si aggiunge una qualsiasi quantità di uno o più di questi composti, la pressione parziale di CO2 rimane costante

Uso della costante di equilibrio Abbiamo visto che l’equilibrio chimico può essere caratterizzato mediante una costante di equilibrio. Vediamo adesso come questa possa essere utilizzata. Ci sono vari impieghi: Interpretazione qualitativa della costante di equililbrio. Previsione della direzione della reazione, per una reazione che non si trovi all’equilibrio e che lo debba raggiungere Calcolo delle concentrazioni di equilibrio a partire da determinate concentrazioni iniziali

Uso qualitativo della costante di equilibrio Per una data reazione di equilibrio:   a A + b B c C + d D KC si può affermare che Se KC è grande (KC>>1) l’equilibrio è spostato verso i prodotti, cioè nella miscela di equilibrio le concentrazioni dei prodotti sono maggiori di quelle dei reagenti Se KC è piccola (KC<<1) l’equilibrio è spostato verso i reagenti

Principio di Le Chatelier Si consideri una reazione chimica all’equilibrio. Se le condizioni di reazione vengono modificate la reazione si sposta dall’equilibrio e procede in una direzione o nell’altra fino a raggiungere una nuova condizione di equilibrio. La direzione in cui la reazione si sposta può essere prevista usando il principio di Le Chatelier: Quando un sistema all’equilibrio chimico viene perturbato mediante una variazione delle condizioni di reazione esso modifica la propria composizione all’equilibrio in modo da opporsi a tale variazione.

CINETICA CHIMICA

A differenza della termodinamica che si occupa della stabilità relativa tra reagenti e prodotti in una reazione chimica, la cinetica chimica si occupa dello studio della velocità con cui avviene una reazione chimica e della dipendenza di questa da vari fattori. Oltre che della descrizione della dipendenza della velocità di reazione da fattori sperimentali, la cinetica si occupa anche di esaminare la sequenza dei processi chimici o fisici attraverso cui ha luogo la conversione tra reagenti e prodotti. In questa maniera lo studio della velocità di reazione mira ad ottenere informazioni dettagliate sull’interazione tra le molecole nel corso della reazione.

La velocità di reazione dipende da vari fattori: Natura dei reagenti Concentrazione dei reagenti Temperatura di reazione Presenza di eventuali catalizzatori Superficie dell’interfaccia (se la reazione avviene tra reagenti in due fasi diverse)

Consideriamo la seguente reazione chimica: A P in cui A è il reagente e P il prodotto. Si definisce velocità media di formazione del prodotto l’aumento della concentrazione del prodotto nell’unità di tempo considerata, cioè: in cui [P]1 è la concentrazione di P al tempo t1 e [P]2 quella ad un tempo successivo t2. Poiché sia [P] che t aumentano essa è una grandezza positiva ed ha unità mol/(L·s).

Si parla anche di velocità di scomparsa del reagente A che è anch’essa una grandezza positiva, anche se [A] diminuisce con t, a causa del segno negativo. Si definisce velocità di reazione l’aumento della concentrazione dei prodotti o la diminuzione della concentrazione dei reagenti nell’unità di tempo, cioè

Catalisi Chiamiamo catalizzatore una sostanza che aumenta la velocità di una data reazione chimica senza entrare a far parte della reazione complessiva e quindi senza subire trasformazioni. In genere il catalizzatore entra a far parte del meccanismo di reazione in cui viene consumato in uno stadio elementare e rigenerato in un successivo. Con catalisi si intende l’aumento della velocità di reazione in seguito all’aggiunta del catalizzatore. Un esempio è la reazione fra SO2 ed O2 per dare SO3 che è catalizzata da NO: NO 2 SO2(g) + O2(g) 2SO3(g) Pur non entrando nella stechiometria della reazione complessiva la presenza di NO la reazione aumenta la velocità di reazione.

2 NO2(g) + SO2(g) NO(g) + SO3(g) 2 SO2(g) + O2(g) 2SO3(g) Questo accade perché in presenza di NO la reazione avviene con il seguente meccanismo: 2 NO(g) + O2(g) 2NO2(g) 2 NO2(g) + SO2(g) NO(g) + SO3(g) Le due molecole di NO consumate nel primo stadio vengono rigenerate nel secondo stadio.

L’azione di un catalizzatore può essere illustrata in un diagramma di energia potenziale e consiste nell’abbassamento dell’energia di attivazione della reazione. EP Ea 2SO2+O2 Ea1 Ea2 2SO3 Grado di avanzamento della reazione

In generale: un catalizzatore non prende parte alla reazione, ma cambia l’energia dello stato di transizione. reagenti prodotti stato di transizione con il catalizzatore