Cromatografia liquida ad alta pressione

Slides:



Advertisements
Presentazioni simili
Laboratorio di chimica Prof. Aurelio Trevisi
Advertisements

Grandezze ed equazioni fondamentali
SOLUZIONI.
DISINFEZIONE E STERILIZZAZIONE
Tecniche cromatografiche Tra le tecniche più idonee allanalisi di reperti organici vi sono le cosiddette tecniche cromatografiche, utilizzate per separare.
CROMATOGRAFIA …un po’ di teoria:
Interferenze Interferenza dovute all’emissione della fiamma
Cromatografia liquida ad alte prestazioni (HPLC)
Introduzione alle misure strumentali
Lab. Chimica Analitica II _HPLC. Lab. Chimica Analitica II _HPLC Cromatogramma di eluizione LSC.
Cromatografia a scambio ionico
Cromatografia Generale
INTRODUZIONE La prima esperienza cromatografica fu eseguita dal botanico russo Twsett all’inizio del secolo scorso. Egli riempì una colonna con CaSO4 (gesso)
GASCROMATOGRAFIA INTRODUZIONE
CHIMICA ANALITICA INTRODUZIONE
Solubilità e proprietà colligative
Che cos’è la CROMATOGRAFIA?
Fase stazionaria (solido)
1) Isolamento e Purificazione dei Composti Organici
CHIMICA ANALITICA: È la scienza che estrae informazioni:
ELETTROFORESI CAPILLARE
Capitolo 13 Le proprietà delle soluzioni 1.Perchè le sostanze si sciolgono? 2.La solubilità 3.La concentrazione delle soluzioni 4.Le soluzioni elettrolitiche.
Separazione Cr/Mn su colonna di allumina
Estrazione ed analisi dei lipidi
Cromatografia su strato sottile
Prof. S. Consoli Prof. A. Percolla
Soluzioni Un po’ di chimica …
GAS-CROMATOGRAFIA ANALISI AMBIENTALI CONTROLLO QUALITA’ INDUSTRIA
Cromatografia per Scambio Ionico
Gas cromatografia: i rivelatori
SOLUZIONI.
CROMATOGRAFIA Tecnica di analisi e/o separazione di sostanze in miscela, basata sulla differente distribuzione delle specie da separare tra una fase mobile,
TIPI di CROMATOGRAFIA CROMATOGRAFIA COLONNA PLANARE GC SFC TLC
Unità didattica: Le soluzioni
TECNICHE ANALITICHE SEPARATIVE
STRUMENTAZIONE PER SPETTROFOTOMETRIA
Sostanza pura Il termine sostanza indica il tipo di materia di cui è fatto un corpo. Corpi formati da un unico tipo di materia sono costituiti da sostanze.
METODI DI ANALISI QUANTITATIVA STRUMENTALE
La Cromatografia La cromatografia é una tecnica di separazione di vari componenti di una miscela che consiste nello sfruttare in modo particolarmente.
Spettroscopia di Assorbimento Molecolare
HPLC Laboratorio di Chimica Organica 2 - Prof. Cristina Cimarelli
Equazione di Van Deemter
Supercritical Fluid Chromatography
ottimizzazione di metodi cromatografici
Modulo di ANALISI CHIMICHE
CROMATOGRAFIA DI ADSORBIMENTO
Tecniche di Separazione e Purificazione
Tecniche per l’analisi degli alimenti
TECNICHE ANALITICHE SEPARATIVE
TECNICHE ANALITICHE SEPARATIVE
Cromatografia per Scambio Ionico
2 CAPITOLO Le trasformazioni fisiche della materia Indice 1
UNIVERSITÀ DEGLI STUDI DI NAPOLI
High Performance Liquid Chromatography
Programma Misure ed Unità di misura. Incertezza della misura. Cifre significative. Notazione scientifica. Atomo e peso atomico. Composti, molecole e ioni.
CORSO ANALISI CHIMICA Cromatografia: parametri U.D.2 ITIS VIOLA A.S. 2015/ Schema Dalla combinazione dei meccanismi e dei supporti, si possono avere.
CROMATOGRAFIA Estrazione Ipotizziamo di avere due composti A e B A è solubile in acqua e insolubile in etere B è solubile in egual misura sia in acqua.
Fase diretta-1 Tecniche di separazione e tipi di fasi in cromatografia liquida la silice Fase stazionaria: la silice è di gran lunga la più utilizzata.
Università degli Studi di Napoli S.I.C.S.I. SCUOLA INTERUNIVERSITARIA CAMPANA DI SPECIALIZZAZIONE ALL’ INSEGNAMENTO Laboratorio di CHIMICA ANALITICA Docente:
LO STATO SOLIDO. Solidi cristallini Caratteristica tipica dei solidi cristallini e ̀ l’anisotropia: proprietà di una sostanza per cui i valori delle.
Cromatografia (dal greco: chroma, colore + graphein, scrivere) Presentazione a cura di Rita Barra matr: 574/390Presentazione a cura di Rita Barra matr:
Cromatografia Università degli studi di Napoli Federico II
SICSI A013 VIII Ciclo Università degli studi di Napoli “Federico II” Professore: Salvatore Andini Laboratorio di Chimica Analitica.
CROMATOGRAFIA PER SCAMBIO IONICO
Spettrofotometria. La spettrofotometria La spettrofotometria si occupa dello studio quali-quantitativo delle radiazioni assorbite (o emesse) dalla materia.
ESTRAZIONE Esempi di metodologie LA PROCEDURA ADOTTATA DIPENDE:
Spettroscopia UV-VIS Nella spettroscopia UV-VIS il campione è irraggiato con luce avente  nell’UV, nel visibile . Le molecole che compongono il campione.
2 CAPITOLO Le trasformazioni fisiche della materia Indice 1
Analisi Organica 1.TECNICHE DI ANALISI E SEPARAZIONE CROMATOGRAFICA Principi di base e classificazione delle tecniche cromatografiche: Un riepilogo. 
CROMATOGRAFIA L'invenzione della cromatografia viene attribuita al biochimico russo Mikhail Cvet che riuscì, nel 1906, a separare la clorofilla da un estratto.
Transcript della presentazione:

Cromatografia liquida ad alta pressione Tipi di cromatografo Unità di pressione Fase mobile Rivelatori HPLC di adsorbimento HPLC di ripartizione

La cromatografia ad alta pressione HPLC (High Performance Liquid Chromatography o High Pressure Liquid Chromatography) si basa sui principi generali delta cromatografia d’adsorbimento, di ripartizione, di scambio ionico ecc.; essa permette di analizzare miscele difficilmente risolvibili con le tradizionali cromatografie. Le colonne HPLC hanno una maggiore risoluzione dovuta all’impiego di fasi stazionarie molto finemente suddivise alto scopo di realizzare una superficie di interazione molto grande ed un migliore impaccamento, questo comporta che la fase mobile attraversi la fase stazionaria della colonna ad una pressione molto alta per permettere una eluizione accettabile nel tempo. Per una simile tecnica cromatografica, la fase stazionaria, che presenta una granulometria generalmente compresa tra 5-10 mm, deve avere requisiti particolari per adattarsi al tipo di separazione da effettuare ed inoltre deve avere come requisiti indispensabili: a) essere stabile idroliticamente e termicamente; b) resistere all’azione meccanica del flusso dell’eluente.

I vantaggi dell’HPLC possono essere cosi riassunti: Diversamente dalla gascromatografia, l’HPLC non separa sostanze che si trovano allo stato di vapore, ma permette la separazione di tutte quelle sostanze che difficilmente possono essere vaporizzabili o che in ogni modo possano alterarsi ad una temperatura più alta di quella ambiente; si può affermare che la gascromatografia e l’HPLC sono due tecniche cromatografiche che si completano a vicenda in quanto permettono di separare i costituenti di una qualsiasi miscela. I vantaggi dell’HPLC possono essere cosi riassunti: tempi brevi d’esecuzione riproducibilità delle condizioni sperimentali le colonne possono essere usate più volte; possono essere analizzate miscele di sostanze tremolabili, esplosive e non volatili. possono essere evidenziate piccolissime quantità di sostanze grazie all’alta sensibilità dei rivelatori che si utilizzano; semplicità d’uso

Tecniche cromatografiche analiti volatili o volatilizzabili, termicamente stabili, non ionici  Gascromatografia analiti non volatili o poco volatili, ionici, ionizzabili o non ionici, termicamente instabili Cromatografia liquida analiti non volatili o termicamente instabili ma non rivelabili dai comuni detector per LC Cromatografia fluida supercritica

Schema di un HPLC

HPLC in isocratica

HPLC a gradiente

Le caratteristiche di uno strumento HPLC sono rappresentate nello schema a blocchi delle figure. II solvente opportunamente filtrato e depurato, viene inviato alla colonna; questa operazione viene effettuata tramite una pompa. Un flussometro, posto dopo la pompa, regolerà la quantità di eluente che, nelle condizioni d’esercizio scelte, sarà immesso nella colonna. Prima della colonna cromatografica viene posto un iniettore, che permette l’inserimento del campione sciolto in un solvente opportuno. Per evitare di danneggiare la fase stazionaria della colonna é opportuno eseguire una prefiltrazione, attraverso una analoga colonna più piccola posta in serie, contenente lo stesso tipo di fase stazionaria con una dimensione delle particelle più grande, allo scopo di eliminare le impurezze grossolane, le morchie e le particelle insolubili contenute nel campione da analizzare.

Alla fine della colonna cromatografia viene posto un adatto rivelatore che, attraverso il cromatogramma, darà indicazioni sull’andamento della separazione. Nel caso in cui si opera in isocratica é sufficiente una sola pompa (figura 1), mentre nel caso in cui si opera a gradiente (figura 2), è necessario usare due pompe per mescolare i solventi ed inviarli alta colonna ad un valore controllato di pressione, le condizioni operative, in questo caso, verranno programmate in anticipo tramite un calcolatore che automaticamente effettuerà le operazioni necessarie. E’ importante osservare che, poiché l’HPLC opera con un alto flusso di fase mobile e quindi in condizioni di alta pressione, tutto il sistema operativo deve essere adatto per lavorare in queste condizioni.

In particolare la fase stazionaria è posta in una colonna cromatografica fatta con un materiale adatto per sopportare pressioni elevate (generalmente sono d’acciaio) e la colonna stessa deve essere inserita in una camicia all’interno della quale sarà esercitata una pressione tale da equilibrare la pressione esercitata dalla fase mobile all’interno della colonna. Nel caso di una HPLC di tipo preparativo, il rivelatore darà informazioni sulla separazione della miscela, per raccogliere le varie frazioni di eluito contenente le sostanze purificate. Nel caso in cui la separazione dei vari costituenti risulterà parziale, le frazioni raccolte che contengono i componenti puri verranno raccolte, mentre le frazioni che contengono ancora le sostanze in miscela verranno dirottate con un rubinetto ed inviate alla colonna per essere nuovamente cromatografate.

Oltre ai vantaggi precedentemente elencati per questo tipo di tecnica, l'HPLC costituisce un sistema cromatografico altamente efficiente in quanto: - usa delle fasi stazionarie altamente perfezionate e molto versatili anche per separazioni particolarmente difficili, - usa rivelatori molto sensibili che vengono adattati al tipo di sostanza da separare; - usa un alto flusso delta fase stazionaria che porta ad una esecuzione molto rapida nel tempo ed efficace.

Unità di pressione utilizzate per l’HPLC Per questa tecnica cromatografia, l’unità di pressione utilizzata è il pascal (pa) 1 pascal = 1 newton/m2 = 1x105 bar 1 bar = 0,9869 atm = 1,01 Kg/cm2 1 Megapascal (Mpa) = 10 bar = 9,869 atm = 10,1971 Kg/cm2

FASE MOBILE Nell’HPLC Ia fase mobile verrà scelta in funzione delle sostanze da separare e deve presentare alcune caratteristiche peculiari tali da non generare inconvenienti, fra queste: deve presentare una bassa viscosità, in quanto questo permette di operare, all'interno della colonna, in condizioni di pressione di eluizione non troppo elevata; deve essere degasificato prima dell'introduzione in colonna; la presenza di aria può modificare chimicamente le sostanze da separare oppure dare alterazioni nella risposta del rivelatore deve essere puro, perchè la presenza di sostanze estranee può danneggiare la colonna; deve avere una temperatura di ebollizione sufficientemente elevata per evitare fenomeni di volatilizzazione alle temperature usate durante l'operazione cromatografica.

Selezione della tecnica HPLC

Eluizione isocratica o in gradiente isocratica isocratica gradiente (più forte) (meno forte)

Rivelatori per HPLC Bulk properties: si misura una caratteristica della fase mobile che indirettamente rivela gli analiti Solute properties: si misura una caratteristica del soluto Spettrofotometrico UV-visibile (UV-Vis) UV-visibile con Diode-array (UV-DAD) Spettrofotometrico IR Fluorimetrico Indice di rifrazione (RID) Elettrochimico (ED) Spettrometria di massa (MS)

RIVELATORI I tipi di rivelatori che possono essere utilizzati per l'HPLC sono diversi, l'uso di ciascuno in relazione alla natura delle sostanze che debbono essere evidenziate. E' evidente che, qualunque sia il rivelatore usato, la fase mobile non deve in alcun modo interferire nella determinazione ed il rumore di fondo dello strumento non deve essere superiore al segnale più basso dovuto alle varie sostanze da analizzare. I rivelatori più comunemente usati sono: spettrofotometrici, (IR, UV ecc.), concentrazione minima rilevabile 10-8 - 10-9 g/ml; fluorimetrici, concentrazione minima rilevabile 10-10 - 10-11 g/ml; a indice di rifrazione, un rivelatore a bassa sensibiIità a ionizzazione di fiamma.

Rivelatore spettrofotometrico UV-visibile il rivelatore più diffuso (copre più del 70% dei metodi di rivelazione) basato sull’assorbimento di luce nel range UV- visibile sensibile a moltissime sostanze organiche ed inorganiche (es. 254 nm) sensibilità tipica: 0.1 ppb è un sistema non distruttivo

Gruppi cromofori Cromoforo Formula lmax (nm) e aldeide -CHO 210 1.500 amino -NH2 195 2.800 azo -N=N- 285-400 3-25 bromuro -Br 208 300 carbossile -COOH 200-210 50-70 chetone -C=O 1.000 disolfuro -S-S- 194 5.500 estere -COOR 205 50 etere -O- 185 etilene -C=C- 190 6.000 fenile -C6H5 202, 255 naftile 220, 275 nitrato -ONO2 270 12 nitrito -ONO 220-230 1.000-2.000 nitrile -C=N 160 - nitro -NO2 forte

Scelta della lunghezza d’onda La l del rivelatore va scelta in base ad alcune considerazioni: massimizzare sensibilità e specificità il solvente della fase mobile può causare shifts in lmax (2-5 nm) controllare l’assorbanza degli analiti nella fase mobile i solventi per fase mobile hanno cutoff nell’UV operando sotto la lcutoff può: ridurre la sensibilità introdurre rumore sulla linea di base

Rivelatore a indice di rifrazione basato sulla misura del’indice di rifrazione dell’eluato (tipico rivelatore bulk) non adatto con eluizione in gradiente sensibilità tipica: 0. 1 ppm completamente aspecifico necessita di termostatazione accuratissima si usa per composti non attivi nel range UV-visibile (zuccheri) è un sistema non distruttivo

Rivelatore a indice di rifrazione basato sulla misura del’indice di rifrazione dell’eluato (tipico rivelatore bulk) non adatto con eluizione in gradiente sensibilità tipica: 0. 1 ppm completamente aspecifico necessita di termostatazione accuratissima si usa per composti non attivi nel range UV-visibile (zuccheri) è un sistema non distruttivo

Rivelatore a indice di rifrazione basato sulla misura del’indice di rifrazione dell’eluato (tipico rivelatore bulk) non adatto con eluizione in gradiente sensibilità tipica: 0. 1 ppm completamente aspecifico necessita di termostatazione accuratissima si usa per composti non attivi nel range UV-visibile (zuccheri) è un sistema non distruttivo

HPLC DI ADSORBIMENTO I principi su cui si basa la cromatografia di adsorbimento sono stati già trattati nella parte generale. Si può operare in fase normale o in fase inversa in funzione del materiale che si usa per la fase stazionaria. La fase stazionaria può essere caratterizzata, in relazione alla sua struttura fisica, in due categorie: materiale poroso sia in superficie che all’interno contraddistinto in microporous, se la dimensione vana fra 5-10 mm; macroporous, se la dimensione varia fra 50-100 mm materiale, di dimensione compresa fra 20-40 mm, compatto nella parte interna e con una pellicola porosa in superficie dello spessore compreso fra 1-2 mm, che viene definito pellicular. I macroporous e i pellicular vengono generalmente utilizzati per cromatografie preparative. I materiali più comunemente utilizzati sono: gel di silice, allumina, poliamidi, cellulosa, acetato di cellulosa, chromosorb (polimeri del vinil- e divinilbenzene).

HPLC Dl RIPARTIZIONE Per questo tipo di cromatografia la fase stazionaria é costituita da un liquido che può essere legato ad un supporto inerte fisicamente o chimicamente. Nel caso in cui la fase stazionaria è legata fisicamente, può verificarsi un trascinamento di essa da parte della fase mobile; per evitare questo, che porterebbe ad una cromatografia non perfettamente efficiente si usa saturare la fase mobile con la fase stazionaria. In generale per evitare trascinamenti della fase stazionaria si usa operare legando chimicamente la fase stazionaria inerte che in genere è costituita da gel di silice, in particolare vengono funzionalizzati in vario modo i gruppi silanolici (figura 3)

Alcuni metodi di funzionalizzazione vengono riportati nello schema seguente:

Se si adopera come fase stazionaria silice legata chimicamente con gruppi funzionali (bonded phase chromatography) si può operare sia in fase normale che in fase inversa in funzione della polarità dei gruppi legati al supporto, si avrà così: fase normale: silice legata a gruppi cianopropilici; fase inversa: silice legata a -C18, -C8, -fenile. L’ordine di polarità dei vari gruppi legati alla silice varia secondo la seguente scala di polarità: -CN > -NH2 > -C(CH3)2 > -C8> -fenile Si può operare sia in fase normale che in fase inversa, tenendo conto del tipo di fase mobile da usare in funzione del tipo di fase stazionaria.