A.S.E.21.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 21 Tecnica di sintesiTecnica di sintesi EsempiEsempi Riduzione del numero di statiRiduzione.

Slides:



Advertisements
Presentazioni simili
MULTIVIBRATORI BISTABILI
Advertisements

Dalla macchina alla rete
Capitolo 4 Logica sequenziale
Macchine sequenziali Capitolo 4.
Esercitazioni su circuiti combinatori
Introduzione ai circuiti sequenziali
Sintesi FSM – Prima parte
Macchine non completamente specificate
Analisi e Sintesi di circuiti sequenziali
Autronica LEZIONE N° 15 Reti sequenziali, concetto di memoria, anelli di reazione Esempio, Flip-Flop R-S Tecniche di descrizione Grafo orientato Diagramma.
ARCHITETTURA DEI SISTEMI ELETTRONICI
ARCHITETTURA DEI SISTEMI ELETTRONICI
ARCHITETTURA DEI SISTEMI ELETTRONICI
A.S.E.12.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 12 Esempio di minimizzazioneEsempio di minimizzazione Considerazioni su soluzioni diverseConsiderazioni.
ARCHITETTURA DEI SISTEMI ELETTRONICI
A.S.E.25.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 25 Reti sequenziali sincronizzate complesseReti sequenziali sincronizzate complesse –Macchina.
A.S.E.18.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 18 Reti sequenzialiReti sequenziali Tecniche di descrizioneTecniche di descrizione –Tabella.
ARCHITETTURA DEI SISTEMI ELETTRONICI
ARCHITETTURA DEI SISTEMI ELETTRONICI
ARCHITETTURA DEI SISTEMI ELETTRONICI
ARCHITETTURA DEI SISTEMI ELETTRONICI
Reti Combinatorie: sintesi
Macchine sequenziali.
Dalla macchina alla rete: reti LLC
Macchine sequenziali.
Analisi e Sintesi di circuiti sequenziali. Definizione Una macchina sequenziale é un sistema nel quale, detto I(t) l'insieme degli ingressi in t, O(t)
Esempi di Automi a stati Finiti
Una rete sequenziale asincrona è dotata di due
MACCHINE A STATI FINITI
Automi LAVORO SVOLTO DA MARIO GERMAN O
Traformazioni fra Bistabili e Registri
ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 14 Contatori mediante sommatoriContatori mediante sommatori Ring CountersRing Counters Modelli di reti.
ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 11 Reti sequenzialiReti sequenziali BistabileBistabile Flip - Flop S – RFlip - Flop S – R 11.1A.S.E.
ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 12 Flip - Flop S – R CloccatoFlip - Flop S – R Cloccato D LatchD Latch TemporizzazioniTemporizzazioni Durata.
ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 8 Enumerazione di funzioniEnumerazione di funzioni Reti logicheReti logiche Reti logiche combinatorieReti.
Algebra di Boole.
Circuiti di memorizzazione elementari: i Flip Flop
ARCHITETTURA DEI SISTEMI ELETTRONICI
ARCHITETTURA DEI SISTEMI ELETTRONICI
A.S.E ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 22 Riduzione del numero di statiRiduzione del numero di stati EsempioEsempio Assegnamento degli.
A.S.E.14.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 14 Alcune definizioniAlcune definizioni Algoritmo di sintesi ottima di Quine-McCluskeyAlgoritmo.
A.S.E.12.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 12 Mappe di KarnaughMappe di Karnaugh Sintesi ottimaSintesi ottima Esempio di minimizzazioneEsempio.
Dalla macchina alla rete: reti LLC. Dalla macchina alla rete Per realizzare una macchina sequenziale è necessario –Codificare gli insiemi I,S,O con variabili.
A.S.E.20.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 20 Flip - Flop J – K Master – SlaveFlip - Flop J – K Master – Slave Soluzione alternativaSoluzione.
Architettura degli Elaboratori 1
A.S.E.24.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 24 Reti sequenziali sincronizzate complesseReti sequenziali sincronizzate complesse –Macchina.
A.S.E.25.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 25 Reti sequenziali sincronizzate complesseReti sequenziali sincronizzate complesse RichiamiRichiami.
A.S.E.22.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 22 Riconoscitore di sequenzaRiconoscitore di sequenza Sintesi di contatore modulo 8Sintesi di.
A.S.E.18.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 18 Reti sequenzialiReti sequenziali –concetto di memoria –anelli di reazione EsempioEsempio.
A.S.E.23.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 23 Sintesi di contatore modulo 8Sintesi di contatore modulo 8 Contatori modulo 2 NContatori.
Reti Sequenziali Corso di Architetture degli Elaboratori Reti Sequenziali.
A.S.E.10.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 10 Mappe di KarnaughMappe di Karnaugh ImplicantiImplicanti Implicanti principaliImplicanti principali.
A.S.E.22.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 22 Sintesi di contatore modulo 8Sintesi di contatore modulo 8 Contatori modulo 2 NContatori.
A.S.E.18.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 18 Flip-flop S-R Master-slaveFlip-flop S-R Master-slave Flip-flop J-K Master-slaveFlip-flop.
A.S.E.19.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 19 Flip-Flop R-SFlip-Flop R-S Variabili di statoVariabili di stato Flip-Flop R-S con abilitazioneFlip-Flop.
A.S.E.19.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 19 Contatori Sincroni modulo “2 N ”Contatori Sincroni modulo “2 N ” Contatori sincroni modulo.
A.S.E.26.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 26 Reti sequenziali sincronizzate complesseReti sequenziali sincronizzate complesse EsempioEsempio.
Sintesi Reti Combinatorie
A.S.E.11.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 11 Funzione XORFunzione XOR Enumerazione di funzioniEnumerazione di funzioni Reti logicheReti.
A.S.E.21.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 21 Flip - Flop J – K Master – SlaveFlip - Flop J – K Master – Slave Soluzione alternativaSoluzione.
A.S.E.16.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 16 Porte Tri StatePorte Tri State Reti sequenzialiReti sequenziali –concetto di memoria –anelli.
TEORIA DEGLI AUTOMI Una macchina sequenziale a stati finiti o AUTOMA a stati finiti è un sistema sequenziale che ha un insieme finito di stati interni,
L’algebra della logica delle proposizioni
ELETTRONICA DIGITALE – circuiti sequenziali
Calcolatori Elettronici
Reti Logiche A Lezione 2.1 Sintesi di reti combinatorie a due livelli
Politecnico di MilanoC.Brandolese, F.Salice Sintesi FSM – Prima parte Calcolatori Elettronici.
Sintesi Sequenziale Sincrona
La tabella delle verità è un modo per rappresentare il comportamento di una funzione combinatoria La tabella delle verità ha due tipi di colonne: colonne.
Flip flop sincronizzati Spesso l’eventuale cambiamento di stato di un flip-flop non si fa coincidere con l’istante in cui si modificano i valori dei bit.
Transcript della presentazione:

A.S.E.21.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 21 Tecnica di sintesiTecnica di sintesi EsempiEsempi Riduzione del numero di statiRiduzione del numero di stati EsempiEsempi

A.S.E.21.2 Richiami Modelli di reti sequenzialiModelli di reti sequenziali –Macchina di Mealy –Macchina di Moore –Macchina di Mealy Ritardata Sintesi di reti sequenziali sincronizzate Descrizione di reti sequenzialiDescrizione di reti sequenziali Tabella delle transizioniTabella delle transizioni

A.S.E.21.3 Tabella delle transizioni Si riportanoSi riportano –Valore degli ingressi –Variabili di stato di partenza (Stato presente) –Variabili di stato di arrivo(Nuovo stato) Sp 1 … Sp n X1X1X1X1… XnXnXnXn Sn 1 …. Sn n X1X1 XnXn Ck R R’ z1z1 s p1 s Pk s n1 s nk a1a1 anan a n+1 a n+k z1z1 zmzm z m+1 z m+k zmzm Ck

A.S.E.21.4 Flip - Flop J – K Tabella delle funzioniSchema logicoTabella delle funzioniSchema logico Q QQQQ CkJKQ 0XXQ 1XXQ XXQ 00Q QQQQ J Q Ck  Q K

A.S.E.21.5 Diagramma di flusso 0 Wa 0,0 Y Y J, K 0,1 Q 1 Wb 0,0 Y Y 1,0 CkJKQ 0XXQ 1XXQ XXQ 00Q QQQQ

A.S.E.21.6 Tabella delle transizioni WpJKWn Wa 0,0 Y Y J, K 0,1 Q 1 Wb 0,0 Y Y 1,0

A.S.E.21.7 Individuazioni delle equazioni Costruzione delle Mappe di KarnaughCostruzione delle Mappe di Karnaugh 0,00,11,11, J,K Wp WnWpJKWnQ

A.S.E.21.8 Schema D Q Ck Ck J Q K

A.S.E.21.9 Flip - Flop T (TOGLE) Tabella di VeritàSchema logicoTabella di VeritàSchema logico CkTQ 0XQ 1XQ XQ 0Q 1 QQQQ T Q Ck

A.S.E Diagramma di flusso 0 Wa 0 Y T Q 1 Wb 0 Y

A.S.E Tabella delle transizioni TWpWn Wa 0 Y T Q 1 Wb 0 Y

A.S.E Individuazioni delle equazioni Costruzione delle Mappe di KarnaughCostruzione delle Mappe di Karnaugh T Wp WnTWpWnQ

A.S.E Schema D Q Ck Ck T Q

A.S.E Riconoscitore di sequenza Y attiva per la sequenza “0101”Y attiva per la sequenza “0101” Valido anche per sequenze interallaciateValido anche per sequenze interallaciate Riconoscitore di sequenzaRiconoscitore di sequenza

A.S.E Diagramma di flusso [0101] a00 01b 0 1 Y 1 0 Y c11 d10 Z,W Y Y Y

A.S.E Tabella delle transizioni ZpWpXZnWn a00 01b Y 0 1 Y 1 0 Y c11 d10 Z,W

A.S.E Individuazioni delle equazioni X Zp,WpZn X Zp,WpWn X Zp,WpYZpWpXZnWnY

A.S.E Schema CLK D Q DQ DQ X Y Ck Z W ZpZp WpWp

A.S.E Riconoscitore di sequenza 0110 o 1001 (A) x 0 1 x 01 x 0 1 x 0 1 x 0 1 x 0 1 x 0 1 x 0 1 x 0 1 x 01 x 01 x 01 x 01 x 01 x 01 hijklmno defg 0 bc a     Z=

A.S.E Tabella degli Stati (A) P.S. Next State Out Z X = 0 X = 1 X = 0 X = 1 abc00 bde00 cfg00 dhi00 ejk00 flm00 gno00 hhi00 ijk00 jlm00 kno10 lhi01 mjk00 nlm00 ono00

A.S.E Riconoscitore di sequenza 0110 o 1001 (A) x 0 x x x 1 x 1 x 0 1 x 1 0 F ij C E G 0 B D A Z=1

A.S.E Tabella degli stati (A) P.S. Next State Out Z X = 0 X = 1 X = 0 X = 1 ABC00 BBD00 CEC00 DEF00 EGD00 FEC10 GBD01 x 0 x x x 1 x 1 x 0 1 x 1 0 F ij C E G 0 B D A Z=

A.S.E Riduzione della tabella degli stati Meno stati => meno variabili di stato => meno flip-flop => meno ingressi e uscite della rete combinatoriaMeno stati => meno variabili di stato => meno flip-flop => meno ingressi e uscite della rete combinatoria A parità di variabili di stato (stessa potenza del 2) => meno stati = più don’t-care nelle tabelle della verità della rete combinatoria => maggiore semplificabilitàA parità di variabili di stato (stessa potenza del 2) => meno stati = più don’t-care nelle tabelle della verità della rete combinatoria => maggiore semplificabilità

A.S.E Coppie di stati equivalenti Due stati p e q di una rete sincrona sono equivalenti se e solo se per ciascuna combinazione dei valori delle variabili d’ingresso (1) le uscite relative sono identiche eDue stati p e q di una rete sincrona sono equivalenti se e solo se per ciascuna combinazione dei valori delle variabili d’ingresso (1) le uscite relative sono identiche e (2) gli stati successivi sono equivalenti(2) gli stati successivi sono equivalenti –Due stati sono equivalenti => le uscite devono essere non contraddittorie per ciascuna combinazione degli ingressi –Due stati sono equivalenti =>i relativi stati successivi non devono essere contraddittori per ciascuna combinazione degli ingressi

A.S.E Esempio di verifica dell’equivalenza 1.Verifica sua “A” e “B”: per X=1 le uscite sono in contraddizioneNO 2.Verifica per “A” e “E”: uscite OK, per X=0 gli stati successivi sono “A” e “B” che non sono equivalentiNO 3.Verifica per “A” e “D”: uscite OK, per X=0 gli stati successivi sono “A” e “D”, si se è verificata per X=1; per X=1 devono essere equivalenti “B” e “F”: uscite si, “C” e ”C” si (uno stato è equivalente a se stesso) devono essere equivalenti “D” e “G”, si se “D” e “A” sono equivalentiOK PSNS Out Z 0101 AAB00 BDC01 CFE00 DDF00 EBG00 FGC01 GAF00

A.S.E Metodo a tre passi 1.Individuazione di coppie di stati equivalenti 2.Date le coppie di stati equivalenti, determinazione degli insiemi di stati equivalenti 3.Generazione della tabella degli stati ridotta (sostituzione con un unico stato di più stati equivalenti) Metodo valido per tabelle degli stati completamente specificataMetodo valido per tabelle degli stati completamente specificata

A.S.E Algoritmo Passo A 1.Costruire la tabella delle implicazioni  Ogni cella corrisponde a una coppia (q i,q k )  So presenti le coppie con k≠i  L’ordine degli indici non conta ik=ki 2.La cella (q i,q k ) contiene  X se le uscite sono contraddittorie per ingressi uguali  Tutte le coppie di stati successivi relativi agli ingressi, senza duplicazione, (q h,q f )=(q f,q h ), (q l,q l ) no, se gli stati successivi sono uguali a quelli presenti no, se la cella è vuota si mette un marker 3.Ispezione => si mette una X se a una delle coppie contenute nella cella corrisponde una coppia di stati legati a una cella con X 4.Iterare il punto 3

A.S.E Costruzione della tabella delle implicazioni Data una tabella degli stati con “n” statiData una tabella degli stati con “n” stati Matrice diagonale inferiore (diagonale principale esclusa)Matrice diagonale inferiore (diagonale principale esclusa) Per 10 statiPer 10 stati si ha A B C D E F G H I J ABCDEFGHIJ

A.S.E Tabella degli statiTabella delle implicazioni PS.NS.OutX=0X=1X=0X=1 AAB00 BDC01 CFE00 DDF00 EBG00 FGC01 GAF00BXCA,FB,EX DB,FXD,EE,F EA,BB,GXB,FE,GB,DF,G FXD,GXXX GB,FXA,FE,FA,DA,BF,GX ABCDEF Manca A,D Manca C,C

A.S.E Tabella delle implicazioni passo 1 B CA,FB,E DB,FD,EE,F EA,BB,GB,FE,GB,DF,G FD,G GB,FA,FE,FA,DA,BF,G ABCDEFBCA,FB,E DB,FD,EE,F EA,BB,GB,FE,GB,DF,G FD,G GB,FA,FE,FA,DA,BF,G ABCDEF BCA,FB,E DB,FD,EE,F EA,BB,GB,FE,GB,DF,G FD,G GB,FA,FE,FA,DA,BF,G ABCDEFBCA,FB,E DB,FD,EE,F EA,BB,GB,FE,GB,DF,G FD,G GB,FA,FE,FA,DA,BF,G ABCDEF

A.S.E Tabella delle implicazioni passo 2 B CA,FB,E DB,FD,EE,F EA,BB,GB,FE,GB,DF,G FD,G GB,FA,FE,FA,DA,BF,G ABCDEFBCA,FB,E DB,FD,EE,F EA,BB,GB,FE,GB,DF,G FD,G GB,FA,FE,FA,DA,BF,G ABCDEF BCA,FB,E DB,FD,EE,F EA,BB,GB,FE,GB,DF,G FD,G GB,FA,FE,FA,DA,BF,G ABCDEF

A.S.E Coppie di stati equivalenti (Passo B) e Insiemi di stati equivalenti (Passo C) B CA,FB,E DB,FD,EE,F EA,BB,GB,FE,GB,DF,G FD,G GB,FA,FE,FA,DA,BF,G ABCDEFBCA,FB,E DB,FD,EE,F EA,BB,GB,FE,GB,DF,G FD,G GB,FA,FE,FA,DA,BF,G ABCDEF 1 A  D, A  G, B  F, D  G 2 (A,D,G), (B,F), (D,G) 3 {(A,D,G),(B,F),(C),(E)}

A.S.E.21.33PS.NS.OutX=0X=1X=0X=1 AAB00 BDC01 CFE00 DDF00 EBG00 FGC01 GAF00 Tabella degli stati minima (Passo D) PS.NS.OutX=0X=1X=0X=1 00 01 00 00 {(A,D,G),(B,F),(C),(E)} A=D=G=  B=F=  C=  E= 

A.S.E CONCLUSIONI Sintesi di reti sequenziali sincronizzate Tecnica di sintesiTecnica di sintesi EsempiEsempi Riduzione del numero di statiRiduzione del numero di stati EsempiEsempi