Composti Sono costituiti da atomi di specie diverse.

Slides:



Advertisements
Presentazioni simili
Particelle subatomiche
Advertisements

Le forze nucleari Forza nucleare di interazione forte
Chimica nucleare Radiazioni alfa, beta, gamma Decadimento radioattivo
IL NUCLEO ATOMICO E L’ENERGIA NUCLEARE
Un po' di fisica nucleare: La radioattività
Particelle elementari
Concetti Legame covalente Legame ionico
Decadimenti nucleari fissione fusione trasmutazione elementi naturale e artificiale datazione reperti.
masse: protone e neutrone
Reazione nucleare nelle stelle
La chimica : scienza sperimentale e quantitativa
Dalla lezione precedente: Esistenza e proprietà elettroni
Instabilità nucleare.
Laboratorio di fisica nucleare “La fissione nucleare”
FISICA delle APPARECCHIATURE per MEDICINA NUCLEARE (lezione I)
CENNI DI CHIMICA GENERALE ED INORGANICA
Chimica e didattica della chimica
Ionico, covalente, metallico
Classificazione della materia
Nucleare lenergia nucleare è sufficiente a sostenere la luminosità del Sole per diversi miliardi di anni. Come funziona? E=mc Mld di wattda un.
ENERGIA NUCLEARE.
Fissione nucleare e reattori nucleari.
Fissione e fusione nucleari.
Un po' di fisica nucleare: La radioattività
Chimica generale e inorganica
L’atomo è formato da tre tipi di particelle
La materia e’ tutto cio’ che possiede massa ed occupa spazio
CHIMICA NUCLEARE Come è possibile che cariche dello stesso segno, i protoni, stiano confinate in un volume molto piccolo quale quello nucleare? Sperimentalmente.
LA FISSIONE E LA FUSIONE NUCLEARE
Fissione.
Cationi e Anioni in cerca di nuovi partner ;o)
L'ENERGIA NUCLEARE (IDROGENO
L'Energia Nucleare.
Principi fisici di conversione avanzata (Energetica L.S.)
Le particelle atomiche
Le particelle subatomiche
ENERGIA.
Introduzione al corso Fabio Bossi, Laboratori Nazionali di Frascati INFN.
ALICE CAMILLA CAROLINA GAIA
Le sostanze La materia è costituita da sostanze
Abbiamo parlato di.. Energie nucleari Difetto di massa
Chimica generale con elementi di chimica inorganica
L’ATOMO struttura, particelle e legami
FISICA ATOMICA E NUCLEARE
1. Il nucleo. La radioattività
MERCOLEDI’ GIOVEDI’ MARTEDI’ LEZIONE esercizi
ELEMENTI gruppo periodo.
ENERGIA NUCLEARE La materia può trasformarsi in energia secondo la legge fisica, scoperta da Albert Einstein E = m x C2 La quantità di energia prodotta.
Peso Atomico Tre problemi da risolvere!! (1) Difetto di massa
AaBbCc Consideriamo un composto di formula generica:
MATERIA Tutto ciò che possiede massa e occupa spazio Massa Grandezza fisica fondamentale Esprime la quantità di materia contenuta in un corpo Unità di.
Introduzione alla chimica generale
MOLE Unità utilizzata in chimica per rappresentare quantitativamente grandi numeri di atomi, ioni e molecole E’ la quantità in grammi corrispondente alla.
OBIETTIVO DELLA LEZIONE conoscere I punti fondamentali riguardanti : teorie atomiche, proprietà periodiche,. 1.Ascoltate e guardate l’informazione nella.
Ripasso per il compito Teorie atomiche : Thomson, Rutherford, Bohr numero atomico, numero di massa, isotopi.
LA MATERIA E’ TUTTO CIO’ CHE POSSIEDE MASSA, OCCUPA SPAZIO E POSSIEDE ENERGIA Secondo la teoria atomica la materia è costituita da piccole particelle dette.
E RADIOATTIVITÀ invio Le particelle che compongono il NUCLEO atomico sono chiamate NUCLEONI C OSTITUENTI DEL NUCLEO NEUTRONI carica elettrica neutra.
La struttura dell’atomo
La materia è qualsiasi cosa abbia una massa e occupi uno spazio. Esiste in tre stati: Solido Forma e volume determinati Gas Forma non rigida e volume.
LAVOISIER Conservazione della massa nelle reazioni chimiche PROUST Un determinato composto contiene gli elementi in rapporti di peso indipendenti dal modo.
Stechiometria Parte della chimica che riguarda le quantità delle specie che partecipano alle reazioni chimiche. E’ lo studio e l’applicazione delle relazioni.
Mario Rippa La chimica di Rippa primo biennio.
La materia e’ tutto cio’ che possiede massa ed occupa spazio
Transcript della presentazione:

Composti Sono costituiti da atomi di specie diverse. Possono essere formati da: Molecole Concatenazioni di atomi Ioni

Ioni Un elemento e’ caratterizato dal suo numero atomico. Nell’atomo neutro il numero di elettroni e’ uguale a quello di protoni. Atomi che hanno ceduto o aquistato elettroni rispetto all’atomo neutro si dicono ioni: Catione + Anione -

Le formule delle sostanze Le sostanze elementari ed i composti sono rappresentati graficamente con simboli convenzionali: Le formule chimiche FORMULA MINIMA (stechiometrica o elementare): si ricava dall’analisi elementare della sostanza Es NaCl; H8O4N2S; SiO2 FORMULA MOLECOLARE: Quanti atomi di ciascun elemento entrano a fare parte di una molecola dicomposto Es: O2, H2O2, C6H6, P4, H2O, CO2 Alcune sostanze NON sono costituite da molecole discrete e pertanto esse sono identificate dalla sola formula minima: Es: NaCl, CaCl2, Fe, C, SiO2 IMPORTANTE: riguarda la definizione di molecola

Le formule delle sostanze FORMULA IONICA: i composti possono essere costituiti da atomi o gruppi di atomi con una carica elettrica risultante. L’insieme di questi gruppi in un composto deve essere tale che la carica risultante totale sia nulla. E’ il caso dei composti salini H8O4N2S (NH4)2SO4 2(NH4)+, (SO4)2-

Le formule delle sostanze FORMULA DI STRUTTURA: Rappresentazione schematica della disposizione nello spazio degli atomi in una molecola CO2, CH4, C2H6O, HNO3 CH3CH2OH, H+, NO3-

Reazione chimica La combinazione degli atomi in un composto puo’ cambiare solo quando avviene una reazione chimica Una reazione chimica cambia il rapporto con cui gli atomi si combinano, ma non altera la natura degli atomi C + O2 CO2

Equazione chimica aA + bB cC + dD reagenti prodotti Conservazione della massa: la massa totale dei reagenti e dei prodotti non varia durante la reazione. Si deve avere lo stesso numero di atomi per ogni elemento, anche se in composti differenti, in ambedue i membri dell’equazione.

N è il numero di nuclidi che stanno in esattamente 12 g di 12C. La mole La mole è la quantità di sostanza che contiene un numero N di particelle che devono essere specificate. N è il numero di nuclidi che stanno in esattamente 12 g di 12C.

La massa in g di una mole di 12C è per definizione 12 g. La mole La massa in g di una mole di 12C è per definizione 12 g. N = 6,0221367(36) ×1023 Poiché N è un numero per mole, esso ha unità di misura mol-1 ed è chiamata costante di Avogadro.  N = 6,0221367(36) ×1023 mol-1

Una mole di sostanza diverse ha peso diverso ! Mole e massa molare Una mole di sostanza diverse ha peso diverso ! In una reazione o in una formula chimica contano le moli, non i grammi!

Una mole di sostanza diverse ha peso diverso ! Mole e massa molare Una mole di sostanza diverse ha peso diverso ! In una reazione o in una formula chimica contano le moli, non i grammi! Es: 2H2 + O2 2H2O

Massa molare Rapporto fra massa (in grammi) e quantità di sostanza (in moli), quindi ha come unità di misura g mol-1. Si indica con M

Stechiometria g=g*mol-1*mol grammi di sostanza= massa molare X n.moli g *mol-1 =g/mol Massa molare= grammi/ n.moli n. moli= grammi/ massa molare mol =g/g*mol-1

Chimica nucleare

Unico capitolo del Corso di chimica generale in cui sono permesse “alchimie”

Le forze di legame nel nucleo Protoni e neutroni esistono anche liberi, ovvero non vincolati nel nucleo di un atomo Il NEUTRONE libero, è una particella instabile e tende a decadere (td ca. 9x102 s ), liberando un elettrone ed un protone Il PROTONE libero, è una particella stabile (td ca. 1032 s ) La maggior parte (non tutti) dei nuclidi sono isotopi stabili, ovvero tali che un consistente numero di protoni e neutroni si trova in un volume molto piccolo (il nucleo dell’atomo)

Le forze di legame nel nucleo Questo è contrario ai principi della elettrostatica, in base alla quale particelle aventi carica dello stesso segno si respingono Esiste dunque un tipo di forza di attrazione che ,alle distanze tipiche fra i nucleoni del nucleo, è molto piu’ grande della forza di repulsione elettrostatica Essa è genericamente chiamata: FORZA FORTE

Interazione nucleo-protone Le forze nucleari, che tengono insieme i nucleoni dentro un nucleo, sono forze molto forti fm=10-15 m

Le particelle sub-atomiche I mesoni sono particelle subatomiche, di massa circa 1/5 dei nucleoni, e sono responsabili delle forze nucleari I mesoni sono continuamente scambiate tra nucleoni e l’effetto dello scambio è quello di creare un legame molto forte tra i nucleoni Comunque……. La spiegazione fisica delle forze nucleari noné negli scopi di questo Corso. Ci interessa sapere le consequenze di tali forze sulla stabilità relativa dei vari nuclidi e sulle consequenze di tipo ENERGETICO

Difetto di massa Energia e massa sono correlate dalla equazione di Einstein E=mc2 c=2.998X108 m s-1 I nucleoni, quando fanno parte di un nucleo, hanno MASSA MINORE di quando sono liberi La energia perduta dai nucleoni corrisponde all’energia con cui essi sono legati nel nucleo

Difetto di massa Per entrare a fare parte di un nucleo ogni nucleone “paga” un contributo energetico, per pagare questo contributo lui “attinge” dalla sua massa, trasformandola in energia sulla base della equazione di Einstein E=mc2 c=2.998X108 m s-1

Difetto di massa E=mc2 c=2.998X108 m s-1 Es: 16O M= 15,994915 u.m.a. p=1,007825 u.m.a. n=1,008665 u.m.a. ……. Difetto di massa= 0,137010 u.m.a 0,13701 g mol-1 130 mg su 16 g, … tanta roba… 1,23 x 1013 J mol-1

Difetto di massa 1,23 x 1013 J mol-1 0,13701 g mol-1 D Ca.9 x 105 J mol-1 CH4

Difetto di massa Il difetto di massa è dunque una ENERGIA, e si definisce come la Energia di legame nucleare E/A= energia di legame media per nucleone La perdita media di ciascun nucleone è la misura di quanto un nucleone sia legato nel nucleo

Energia di reazioni nucleari FUSIONE= 2 nuclidi leggeri si uniscono per dare un nuclide piu’ pesante FISSIONE= 1 nuclide pesante si scinde in 2 nuclidi più leggeri Tra poco torneremo su questo aspetto

Fusione nucleare 21H + 31H 42He + 11n 21D + 31T 42He + 11n

Distribuzione naturale dei nuclidi stabili Z ed N pari sono i piu’ stabili Z o N dispari Z ed N dispari sono i meno stabili N è sempre  Z All’aumentare di Z, N diventa sempre piu’ grande Nella distribuzione dei nuclidi stabili Z ed N pari sono i piu’ numerosi Neutroni e protoni tendono ad accoppiarsi tra di loro

Decadimento radioattivo Processo mediante il quale un nuclide naturale o artificiale si trasforma spontaneamente in un altro nuclide Si libera energia, sotto forma di radiazione elettromagnetica (raggi g) o di particelle leggere. RADIOATTIVITA’

Meccanismi di Decadimento Decadimento a Decadimento b- n p+b-

Meccanismi di Decadimento meno comuni Decadimento b+ p + n + b+ Cattura elettronica e- + p+ n

Tempo di dimezzamento t1/2 Tempo necessario affinché un certo numero di nuclidi si sia ridotto della metà Il decadimento, come molti fenomeni chimici, è un processo esponenziale e come tale è regolato da una funzione del tipo y=Ce-At

Tempo di dimezzamento Z A t 1/2 K 19 40 109 a b-, ce 0,0119 Ce 58 142   Elemento Z A t 1/2 decadimento abbondanza naturale % K 19 40 109 a b-, ce 0,0119 Ce 58 142 107 a b - b - 11,1 Tl 81 206 4,19 m b -   Pb 82 212 10,6 h 204 a 1,48  

Tempo di dimezzamento   Elementi con Z <81: Isotopi stabili + 34 isotopi instabili 81  Z 83: Isotopi stabili + 12 isotopi instabili 84  Z 92: Tutti instabili con t 1/2 < 10 7 a tranne 232Th, 235U, 238U 81Tl, 82Pb, 83Bi, 83Po  

Non dovrebbero essere già “esauriti” da milioni di anni? Famiglie radioattive Tutti gli isotopi degli elementi dal Polonio all’Uranio sono radioattivi. Molti di essi hanno tempi di dimezzamento corti, anche nell’ordine di alcune ore   Domanda: se alcuni nuclidi hanno tempi di dimezzamento corti, come fanno ad esistere in natura? Non dovrebbero essere già “esauriti” da milioni di anni? NO, se essi sono prodotti da nuclidi con tempi di dimezzamento lunghi, che continuano a “rifornire” costantemente di quel determinato isotopo Esistono alcuni isotopi radioattivi con tempi di dimezzamento molto lunghi (ca 107 a) che garantiscono la presenza in natura di una quantità costante di tutta una serie di nuclidi con tempi di dimezzamento molto piu’ brevi   Si definisce pertanto una serie di famiglie di decadimento

Famiglie radioattive   Serie 4n+2  

Famiglie radioattive   Serie 4n+3  

Famiglie radioattive   Serie 4n+1 Serie 4n  

Fissione nucleare   La trasformazione di fissione nucleare dovrebbe essere spontanea, perché è accompagnata da un enorme guadagno energetico Vi è pero’ una barriera di potenziale che impedisce una reazione di fissione e fa si che, spontaneamente, gli isotopi stabili subiscano il processo di decadimento, molto meno “vantaggioso” in termini energetici  

Fissione nucleare 23592U + n 9336Kr + 14056Ba + 3 n 23592U + n 9038Sr 14454Xe + 2 n  

Fissione nucleare 23592U + n 9336Kr + 14056Ba + 3 n 23592U + n 9038Sr 14454Xe + 2 n  

Modello a goccia   Per poter dividere un nucleo, è necessario che questo assuma una configurazione allungata, che è assai sfavorita da un punto di vista energetico Tale configurazione puo’ essere raggiunta solo se il nucleo viene “bombardato” con una sorgente di energia, quale un fascio di neutroni  

Reazioni a catena 23592U+ n 9336Kr+ 14056Ba +3n 9038Sr+ 14454Xe +2n   9336Kr+ 14056Ba +3n 9038Sr+ 14454Xe +2n Reazione a catena  

Reazioni a catena L’isotopo naturale più abbondante dell’Uranio è 238U che NON è fissile   La fissione nucleare, nell’Uranio nella sua composizione isotopica naturale non avviene spontaneamente perché si tratta di una reazione SPORADICA, ed i neutroni che vengono liberati sono dispersi e NON vanno a colpire altri nuclidi fissili E dunque necessario arricchire l’Uranio rispetto alla sua composizione isotopica naturale, ovvero mettere a punto un procedimento per ottenere quantità di 235 U separato dagli altri isotopi  

Reazioni a catena Tuttavia anche piccole quantitò 235U NON provocano la reazione a catena, perché i neutroni sono dispersi verso l’esterno   E dunque necessario avere una massa minima, definita MASSA CRITICA, affinché il numero di neutroni generati dalla fissione che incontra un altro nuclide fissile sia maggiore del numero di neutroni che viene dispersi verso l‘esterno LA velocità della reazione a catena puo’ essere controllata se si inseriscono, all’interno del materiale fissile, della barre di grafite, sostanza capace di assorbire neutroni e quindi capace di rallentare ed, al limite, interrompere, il processo della reazione a catena  

Reazioni a catena

Abbiamo parlato di.. Energie nucleari Difetto di massa Fusione e fissione Nuclidi stabili e decadimento Tempo di dimezzamento Serie radioattive Fissione nucleare indotta Uranio arricchito/impoverito Reazioni a catena Reattore nucleare Bomba all’idrogeno