WORKING WITH BIOSEQUENCES Alignments and similarity search.

Slides:



Advertisements
Presentazioni simili
Premessa: si assume di aver risolto (correttamente
Advertisements

Allineamento Pairwise e Multiplo di Bio-Sequenze.
UNIVERSITA’ DI MILANO-BICOCCA LAUREA MAGISTRALE IN BIOINFORMATICA
Capitolo 8 Sistemi lineari.
Sequenza-struttura-funzione
gruppi di amminoacidi in base alle catene laterali
RICERCA DI SIMILARITA’ IN BANCHE DATI
Allineamento di sequenze
I programmi di ricerca in banche dati possono essere oppure essere utilizzabili via web residenti in un calcolatore di cui siamo proprietari o utenti.
Iterazione enumerativa (for)
Gli Indici di Produttività di Divisia
Esercizio 1 Implementare l’algoritmo di Needleman-Wunsch per l’allineamento globale di due sequenze A=a1a2…an e B=b1b2…bm di lunghezza n e m rispettivamente.
Algoritmi e Strutture Dati (Mod. B)
Access: Query semplici
Biologia computazionale A.A semestre II U NIVERSITÀ DEGLI STUDI DI MILANO Docente: Giorgio Valentini Istruttore: Matteo Re p4p4 Programmazione.
Analisi delle corrispondenze
Analisi dei gruppi – Cluster Analisys
1) Algoritmi di allineamento 2) Algoritmi di ricerca in database
Allineamento Metodo bioinformatico che date due o più sequenze ne mette in evidenza similarità/diversità, supponendo che le sequenze analizzate abbiano.
ALLINEAMENTI GLOBALI E LOCALI
FASTA: Lipman & Pearson (1985) BLAST: Altshul (1990)
Allineamento di sequenze proteiche
Passo 3: calcolo del costo minimo
WORKING WITH BIOSEQUENCES Alignments and similarity search
Informatica e Bioinformatica – A. A
Un approccio soft per i primi tre anni della primaria
Ricerca di similarità di sequenza (FASTA e BLAST)
I programmi di ricerca in banche dati possono essere
INDICE I VALORI MEDI LA MEDIA GEOMETRICA LA MEDIA ARITMETICA
A.A CORSO INTEGRATO DI INFORMATICA E BIOINFORMATICA per il CLT in BIOLOGIA MOLECOLARE Scuola di Scienze, Università di Padova Docenti: Dr.
GLI ALGORITMI VISIBILE SUL BLOG INFORMATICA ANNO SCOLASTICO 2013 / 2014 GABRIELE SCARICA 2°T.
Esempio di utilizzo del programma BLAST disponibile all’NCBI
A.A CORSO BIOINFORMATICA 2 LM in BIOLOGIA EVOLUZIONISTICA Scuola di Scienze, Università di Padova Docenti: Dr. Giorgio Valle Dr. Stefania.
Purtroppo non esiste un modo univoco per indicare un gene
A.A CORSO BIOINFORMATICA 2 LM in BIOLOGIA EVOLUZIONISTICA Scuola di Scienze, Università di Padova Docenti: Dr. Giorgio Valle Dr. Stefania.
A.A CORSO INTEGRATO DI INFORMATICA E BIOINFORMATICA per il CLT in BIOLOGIA MOLECOLARE Scuola di Scienze, Università di Padova Docenti: Roberto.
Docente: Dr. Stefania Bortoluzzi Dipartimento di Biologia Universita' di Padova viale G. Colombo 3, 35131, Padova Tel
Docente: Dr. Stefania Bortoluzzi Dipartimento di Biologia Universita' di Padova viale G. Colombo 3, 35131, Padova Tel
Algoritmi e strutture Dati - Lezione 7 1 Algoritmi di ordinamento ottimali L’algoritmo Merge-Sort ha complessità O(n log(n))  Algoritmo di ordinamento.
Capitolo 10 Tecniche algoritmiche Algoritmi e Strutture Dati.
Capitolo 10 Tecniche algoritmiche Algoritmi e Strutture Dati.
Docente: Dr. Stefania Bortoluzzi Dipartimento di Biologia Universita' di Padova viale G. Colombo 3, 35131, Padova Tel
III LEZIONE Allineamento di sequenze
Docente: Dr. Stefania Bortoluzzi Dipartimento di Biologia Universita' di Padova viale G. Colombo 3, 35131, Padova Tel
III LEZIONE Allineamento di sequenze
Allineamento di sequenze
Docente: Dr. Stefania Bortoluzzi Dipartimento di Biologia Universita' di Padova viale G. Colombo 3, 35131, Padova Tel
ALLINEAMENTO DI SEQUENZE
Flusso di Costo Minimo Applicazione di algoritmi: Cammini Minimi Successivi (SSP) Esercizio 1 Sia data la seguente rete di flusso, in cui i valori riportati.
Problemi risolvibili con la programmazione dinamica Abbiamo usato la programmazione dinamica per risolvere due problemi. Cerchiamo ora di capire quali.
Corso integrato di Matematica, Informatica e Statistica Informatica di base Linea 1 Daniela Besozzi Dipartimento di Informatica e Comunicazione Università.
Cloud Tecno V. Percorso didattico per l’apprendimento di Microsoft Access 4 - Le maschere.
SISTEMI DI GIUDIZIO.
Una volta stabilito che un insieme di proteine sono tra di loro omologhe posso procedere ad un allineamento multiplo. Il programma più usato a questo scopo.
Allineamento di sequenze Perché è importante? Le caratteristiche funzionali delle molecole biologiche dipendono dalle conformazione tridimensionale che.
---ATGTTGAAGTTCAAGTATGGTGTGCGGAAC--- --MLKFKYGVRNPPEA-- Che cosa è la bioinformatica? Approccio multidisciplinare al problema della gestione e della elaborazione.
Sistema di ricerca Entrez Insieme di banche dati contenenti svariati tipi di informazioni biomediche, interrogabile mediante un’unica interfaccia Concetto.
Divisione tra un polinomio ed un binomio Regola di Ruffini
A.A CORSO DI BIOINFORMATICA 2 per il CLM in BIOLOGIA EVOLUZIONISTICA Scuola di Scienze, Università di Padova Docenti: Prof. Giorgio Valle Prof.
DIPENDENZA STATISTICA TRA DUE CARATTERI Per una stessa collettività può essere interessante studiare più caratteri presenti contemporaneamente in ogni.
Sistemi di equazioni lineari. Sistemi di primo grado di due equazioni a due incognite Risolvere un sistema significa trovare la coppia di valori x e y.
IL PIANO CARTESIANO E LA RETTA
Ipotesi operative TeoriaEsperienza diretta e/o personale Quesito Piano esecutivo Scelta popolazione Scelta strumenti Scelta metodi statistici Discussione.
Concetti di base. Per biodiversità si intende l'insieme di tutte le forme viventi geneticamente diverse e degli ecosistemi ad esse correlati Il termine.
Esempio di allineamento Due regioni simili delle proteine di Drosophila melanogaster Slit e Notch SLIT_DROME FSCQCAPGYTGARCETNIDDCLGEIKCQNNATCIDGVESYKCECQPGFSGEFCDTKIQFC..:.:
La funzione CASUALE. Gli istogrammi.
Allineamenti Multipli Problema Durante l’evoluzione i residui importanti per il mantenimento della struttura e della funzione sono conservati. Come riconoscere.
A.A CORSO DI BIOINFORMATICA 2 per il CLM in BIOLOGIA EVOLUZIONISTICA Scuola di Scienze, Università di Padova Docente: Prof. Stefania Bortoluzzi.
A.A CORSO INTEGRATO DI INFORMATICA E BIOINFORMATICA per il CLT in BIOLOGIA MOLECOLARE Scuola di Scienze, Università di Padova Docenti: Prof.
WORKING WITH BIOSEQUENCES Alignments and similarity search
Transcript della presentazione:

WORKING WITH BIOSEQUENCES Alignments and similarity search

III LEZIONE Allineamento di sequenze Allineamento globale e allineamento locale Allineamento di sequenze a coppie o multiplo

ALLINEAMENTO DI SEQUENZE Procedura per comparare due o piu’ sequenze, volta a stabilire un insieme di relazioni biunivoche tra coppie di residui delle sequenze considerate che massimizzino la similarita’ tra le sequenze stesse L’allineamento tra due sequenze biologiche è utile per scoprire informazione funzionale, strutturale ed evolutiva

Cosa vuol dire allineare due sequenze (proteine o acidi nucleici)? Scrivere due sequenze orizzontalmente in modo da avere il maggior numero di simboli identici o simili in registro verticale anche introducendo intervalli (gaps – inserzioni/delezioni – indels) seq1: TCATG seq2: CATTG TCAT-G.CATTG 4 caratteri uguali 1 inserzione/delezione

ALLINEAMENTO DI SEQUENZE A COPPIE AGTTTGAATGTTTTGTGTGAAAGGAGTATACCATGAGATGAGATGACCACCAATCATTTC ||||||||||||||||||| |||||||| ||| | |||||| ||||||||||||||||| AGTTTGAATGTTTTGTGTGTGAGGAGTATTCCAAGGGATGAGTTGACCACCAATCATTTC MULTIPLO KFKHHLKEHLRIHSGEKPFECPNCKKRFSHSGSYSSHMSSKKCISLILVNGRNRALLKTl KYKHHLKEHLRIHSGEKPYECPNCKKRFSHSGSYSSHISSKKCIGLISVNGRMRNNIKT- KFKHHLKEHVRIHSGEKPFGCDNCGKRFSHSGSFSSHMTSKKCISMGLKLNNNRALLKRl KFKHHLKEHIRIHSGEKPFECQQCHKRFSHSGSYSSHMSSKKCV KYKHHLKEHLRIHSGEKPYECPNCKKRFSHSGSYSSHISSKKCISLIPVNGRPRTGLKTs

Allineamento GLOBALE o LOCALE GLOBALEconsidera la similarita’ tra due sequenze in tutta la loro lunghezza LOCALE considera solo specifiche REGIONI simili tra alcune parti delle sequenze in analisi Global alignment LTGARDWEDIPLWTDWDIEQESDFKTRAFGTANCHK ||. | | |.|.| || || | || TGIPLWTDWDLEQESDNSCNTDHYTREWGTMNAHKAG Local alignment LTGARDWEDIPLWTDWDIEQESDFKTRAFGTANCHK ||||||||.|||| TGIPLWTDWDLEQESDNSCNTDHYTREWGTMNAHK

ALLINEAMENTO GLOBALE ALLINEAMENTO LOCALE

AACCGAAGGACTTTAATC AAGGCCTAACCCCTTTGTCC AA..CCGAAGGACTTTAATC AACCGAAGGACT TTAATC || |..||...||||...| | |||.|| ||..|| AAGGCTAAACCCCTTTGTCC A AGGCCTAACCCCTTTGTC Fattibile solo per poche sequenze molto brevi! Possono esistere piu’ allineamenti “equivalenti” seq1 AACCGTTGACTTTGACC Seq2ACCGTAGACTAATTAACC AACCGTTGACT..TTGACC | ||||.|||| ||.||| A.CCGTAGACTAATTAACC Allineamento manuale basato sulla massimizzazione del numero residui identici allineati

Un metodo molto semplice ed utile per la comparazione di due sequenze e’ quello della MATRICE DOTPLOT A|X X X T| X X G| X T| X X A T C A C T G T A C| X | | | | | | | A|X X X A T C A - - G T A C| X T| X X A|X X X A T C A G T A

MISURE DI IDENTITA’ E DI SIMILARITA’ Il modo piu’ semplice per definire le relazioni di similarita’ tra nucleotidi e’ basato solo su IDENTITA’ e DIVERSITA’. La piu’ semplice matrice di similarita’ per i nucleotidi e’ la “UNITARY SCORING MATRIX”, matrice che assegna punteggio 1 a coppie di residui identici e 0 ai mismatches. A C G T A | C | G | T | Possono esserci altri criteri per dare un peso diverso da zero a matches tra residui non identici (ad.es. pesare in modo diverso transizioni e transversioni)

MISURE DI IDENTITA’ E DI SIMILARITA’ E’ possibile misurare la similarita’ tra aminoacidi tenendo conto delle loro proprieta’ chimico-fisiche ad. es. l’ acido glutammico e’ piu’ simile all’acido aspartico che alla fenilalanina Un altro modo per misurare la similarita’ tra aminoacidi e’ fondato sulle frequenze osservate di specifiche sostituzioni aminoacidiche in opportuni gruppi di allineamenti. La similarita’ tra due specifici aminoacidi, diciamo A e G, e’ proporzionale alla frequenza con cui si osserva la sostituzione A->G. Le MATRICI DI SOSTITUZIONE piu’ conosciute ed utilizzate sono le matrici PAM (o Dayhoff Mutation Data (MD) Matrices) e le matrici BLOSUM.

Matrici di sostituzione Le matrici di sostituzione si basano su evidenze biologiche Le differenze che si osservano tra sequenze omologhe negli allineamenti sono riconducibili ad eventi di mutazione Alcune di queste mutazioni hanno effetti trascurabili sulla struttura/funzione della proteina

Esempio di matrice di sostituzione ARNK A5-2 R-7 3 N--70 K---6 Nonostante K e R siano due amminoacidi diversi, hanno uno score positivo. Perchè? Sono entrambi amminoacidi carichi positivamente.

MATRICI PAM (Dayhoff et al. 1978) Sono basate sul concetto di mutazione puntiforme accettata, Point Accepted Mutation (PAM) Le prime matrici PAM sono state compilate in base all’analisi delle sostituzioni osservate in un dataset costituito da diversi gruppi di proteine omologhe, ed in particolare su 1572 sostituzioni osservate in 71 gruppi di sequenze di proteine omologhe con similarita’ molto alta (85% di identita’) La scelta di proteine molto simili era motivata dalla semplicita’ dell’allineamento, senza necessita’ di introdurre correzioni per le multiple hits (sostituzioni come A->G->A or A->G->N)

MATRICI PAM L’analisi degli allineamenti mostrò come diverse sostituzioni aminoacidiche si presentassero con frequenze anche molto differenti: le sostituzioni che non alterano “seriamente” la funzione della proteina, quelle “accettate” dalla selezione, si osservano piu’ di frequente di quelle “distruttive”. La frequenza osservata per ciascuna specifica sostituzione (es. A  G) puo’ essere usata per stimare la probabilita’ della transizione corrispondente in un allineamento di proteine omologhe. Le probabilita’ di tutte le possibili sostituzioni sono riportate nella matrice PAM

Matrici BLOSUM - Blocks Substitution Matrix (Henikoff and Henikoff, 1992) Matrici di sostituzione derivate dall’analisi di oltre 2000 blocchi di allineamenti multipli di sequenze, che riguardavano regioni conservate di sequenze correlate. Per ridurre il contributo di coppie di amminoacidi di proteine altamente correlate, gruppi di sequenze molto simili sono state trattate come se fossero sequenze singole ed e’ stato calcolato il contributo medio di ciascuna posizione. Utilizzando diversi cut-off per il raggruppamento di sequenze simili si sono ottenute diverse matrici BLOSUM (BLOSUM62, BLOSUM80, …)  Il nome della matrici indica la distanza evolutiva (BLOSUM62 è stata creata usando sequenze che non avevano più del 62% di identità)

BLOSUM62 Substitution Matrix

L’utilizzo della matrice di similarita’ appropriata per ciascuna analisi e’ cruciale per avere buoni risultati. Infatti relazioni importanti da un punto di vista biologico possono essere indicate da una significativita’ statistica anche molto debole. Sequenze poco divergenti     molto divergenti BLOSUM80BLOSUM62BLOSUM45 PAM1 PAM120PAM250

ALGORITMI PER L’ALLINEAMENTO DI SEQUENZE Algoritmo di Needleman & Wunsch  allineamento globale Algoritmo di Smith & Waterman  allineamento locale

ALGORITMI PER L’ALLINEAMENTO DI SEQUENZE Algoritmo di Needleman & Wunsch  allineamento globale Algoritmo di Smith & Waterman  allineamento locale Utilizzano la PROGRAMMAZIONE DINAMICA!

Siamo a manhattan! Abbiamo molte cose da visitare e solo strade a senso unico. Vogliamo determinare il percorso che ci porta da un estremo all’altro del quartiere e che ci premette di visitare il massimo numero di attrazioni Manhattan Tourist Problem (MTP)

Imagine seeking a path from source to sink to travel (only eastward and southward) with the most number of attractions (*) in the Manhattan grid Sink * * * * * * * ** * * Source

MTP: Greedy Algorithm Is Not Optimal promising start, but leads to bad choices! source sink Adotto l’algoritmo “ingordo”! Ad ogni nodo, scelgo di spostarmi lungo l’arco con il massimo valore. Applicando questo criterio a ciascun passo ottengo un percorso che sarà molto probabilmente diverso da quello ottimale, cioè quello che corrisponde al massimo punteggio globale (alla fine del percorso). In alternativa, posso comporre un percorso che tenga conto del valore totalizzato man mano lungo gli archi selezionati (programmazione dinamica: i punteggi parziali sono calcolati, memorizzati in una tabella e riutilizzati) Partendo dalla fine, vado a ritroso seguendo il percorso che massimizza la somma dei punteggi totalizzati Otterrò il percorso ottimale!

ALGORITMO DI NEEDLEMAN & WUNSCH PER L’ALLINEAMENTO GLOBALE Questo metodo permette di determinare l’allineamento globale ottimale attraverso un’interpretazione computazionale della matrice dotplot. L’allineamento ottimale viene calcolato ricorsivamente per sottosequenze via via piu’ lunghe, cosa possibile in virtu’ dell’indipendenza e dell’additivita’ dei punteggi. Le sequenze vengono comparate attraverso una matrice 2D, le celle rappresentanti matches hanno punteggio 1 (0 per i mismatches). L’algoritmo prevede una serie di somme successive dei punteggi contenuti nelle celle, che da’ luogo ad una matrice di punteggi, la cui analisi permette la costruzione dell’allineamento. Alla fine delle iterazioni, il punteggio della cella piu’ in alto a sinistra rappresenta il punteggio totale dell’allineamento, senza considerare le gap penalties.

Needleman-Wunsch Algorithm Tre fasi 1.Determinazione residui identici 2.Per ogni cella, cercare il valore massimo nei percorsi che dalla cella stessa portano all’inizio della sequenza e dare alla cella il valore del maximum scoring pathway 3.Costruire un allineamento (pathway) andando indietro dalla cella con il punteggio piu’ alto fino all’inizio delle sequenze per ottenere l’allineamento ottimale

Needleman-Wunsch Algorithm – FASE 1 Similarity values valore 1 oppure 0 ad ogni cella, in base alla similarita’dei residui corrispondenti Nell’esempio: –match = +1 –mismatch = 0

Needleman-Wunsch Algorithm – FASE 2 Per ogni cella, voglio determinare il valore massimo possibile per un allineamento che termini in corrispondenza della cella stessa Cerco le celle appartenenti alla colonna e alla riga precedenti a quelle della cella per trovare il valore massimo in esse contenuto Aggiungo questo valore al valore della cella corrente Procedo da “in alto sinistra” verso “in basso a destra” nella matrice

Needleman-Wunsch Algorithm – FASE 3 Costruisco l’allineamento Il punteggio dell’allineamento e’ cumulativo (posso sommare lungo i percorsi nella direzione stabilita) Il miglior allineamento ha il massimo punteggio (ovvero il massimo numero di matches) Questo massimo numero di matches si ritrovera’ nelle ultime righe o colonne L’allineamento si costruisce andando indietro alla cella1,1 a partire dalla cella del massimo numero di matches MP-RCLCQR-JNCBA | || | | | | | -PBRCKC-RNJ-CJA

Needleman-Wunsch Algorithm – FASE 3 MP-RCLCQR-JNCBA | || | | | | | -PBRCKC-RNJ-CJA