sviluppo storico della spettroscopia

Slides:



Advertisements
Presentazioni simili
Le onde elettromagnetiche
Advertisements

OTTICA delle LENTI Presentazione multimediale classe IV IB A.S. 2002/03 Prof. Loredana Villa Per molti strumenti ottici (il cannocchiale, il binocolo,
Interferenza nei film sottili
1. La Fisica Classica 2. Lelettrone e lesperimento di Millikan 3. Gli spettri e il calore 4. La fisica quantistica e leffetto fotoelettrico 5. I modelli.
sviluppo storico della spettroscopia
Principali processi nell’interazione luce materia
Interferenza Diffrazione (Battimenti)
Onde 2 7 dicembre 2012 Principio di Huygens
Onde elettromagnetiche
La polarizzazione della luce
La Luce.
LUCE CARATTERISTICHE E FENOMENI Elisa Bugossi Elena Curiale
1 Le onde meccaniche Le onde sono perturbazioni che si propagano trasportando energia ma non materia 1.
La Luce Flusso di particelle ? Onda? Onda e particella? Fisica Moderna
Realizzazione grafica Vincenzo M. Basso -
Misura della lunghezza d’onda della luce rossa
Corso di Fisica 4 - A.A. 2007/8 I prova in itinere 7/4/08 COGNOME…………..……………………… NOME. …………… ……… ) Un raggio di luce monocromatica propagantesi.
Prova di esame del corso di Fisica 4 A.A. 2007/8 I appello di Settembre del 9/9/08 NOME………….....…. COGNOME…………… ……… ) Come da figura.
Prova di recupero corso di Fisica 4/05/2004 Parte A
II Prova in itinere corso di Fisica 4 A.A. 2000/1
sviluppo storico della spettroscopia
Corso di Fisica B, C.S.Chimica, A.A
Richiami di ottica fisica: interferenza tra 2 sorgenti coerenti
Fenomeni di interferenza. Sorgenti luminose coerenti
Franco Fasano - Liceo di Lugo (RA)
Luce come particella: propagazione rettilinea della luce riflessione
Interferenza L’interferenza Il principio di Huygens
FENOMENI INTERFERENZIALI
RIFLESSIONE E RIFRAZIONE DELLE ONDE E.M.
FENOMENI DIFFRATTIVI •Il principio di Huygens;
Il fenomeno dell’ interferenza si osserva in vari campi della Fisica:
1 ELETTROMAGNETISMO II PROGRAMMA PROVVISORIO
OTTICA Ottica geometrica Ottica fisica Piano Lauree Scientifiche
La luce Gli studiosi hanno impiegato secoli di osservazioni per spiegare un fenomeno che sembra così comune come la luce.
Interferenza due o piu` onde (con relazione di fase costante)
La luce Quale modello: raggi, onde, corpuscoli (fotoni)
Interferenza e diffrazione
LA NATURA DELLA LUCE Di Claudia Monte.
5. Le onde luminose Diffrazione e interferenza.
Onde 10. La rifazione.
Ottica fisica.
LA LUCE.
OTTICA Ottica geometrica Ottica fisica Progetto Lauree Scientifiche
ELETTROMAGNETICHE E LA LUCE
S I Prova in itinere corso di Fisica 4 A.A. 2000/1 Esercizi numerici t
H. h Radiazione elettromagnetica Le onde elettromagnetiche sono vibrazioni del campo elettrico e del campo magnetico; sono costituite da.
Esercizi numerici 1) Secondo le norme dell’Agenzia Regionale Prevenzione e Ambiente dell’Emilia-Romagna per l’esposizione ai campi a radiofrequenza, il.
Ottica geometrica Ottica.
Prova di esame di Fisica 4 - A.A. 2006/7 I prova in itinere 30/3/07 COGNOME…………..……………………… NOME. …………… ……… ) Un raggio di luce monocromatica.
Le onde elettromagnetiche
Prova di recupero corso di Fisica 4 8/05/2006 I parte
LEZIONI DI OTTICA.
Prova di esame del corso di Fisica 4 A.A. 2004/5 I appello di Settembre del 13/9/05 NOME………….....…. COGNOME…………… ……… ) Un raggio di.
Che cos’è la luce Modello ondulatorio – colore frequenza.
Prova di esame del corso di Fisica 4 A.A. 2005/6 II appello di Settembre 22/9/06 NOME………….....…. COGNOME…………… ……… ) Un raggio di luce.
I0 n I Prova in itinere corso di Fisica 4 A.A. 2001/2
Prova di esame del corso di Fisica 4 A.A. 2006/7 I appello di Settembre del 10/9/07 NOME………….....…. COGNOME…………… ……… ) Due onde luminose.
Prova di esame di Fisica 4 - A.A. 2004/5 II appello di Settembre 23/9/05 COGNOME…………..……………………… NOME. …………… ……… ) Un prisma isoscele di.
3) (6 punti) Si consideri la situazione in figura con il sole allo Zenit (incidenza normale) sulla superficie del mare. Si assuma per l’acqua l’indice.
LE ONDE.
14/11/15 1. La luce Teoria corpuscolare (Newton): la luce è composta da particelle che si propagano in linea retta Teoria ondulatoria (Huygens-Young):
ONDE MECCANICHE Una perturbazione viene trasmessa l’acqua non si
Test di Fisica Soluzioni.
Ottica geometrica – Dispersione Fenomeno osservato da Newton con “luce bianca” Fenomeno osservato da Newton con “luce bianca” Un fascio di luce bianca.
Ottica geometrica. I raggi di luce Un raggio di luce è un fascio molto ristretto che può essere approssimato da una linea sottile. In un mezzo omogeneo,
OTTICA DEI TELESCOPI. RADIAZIONE ELETTROMAGNETICA ONDE RADIO ONDE RADIO INFRAROSSO INFRAROSSO VISIBILE VISIBILE RAGGI ULTRAVIOLETTI RAGGI ULTRAVIOLETTI.
Università di Napoli “Federico II” Corso di Laurea Triennale in Fisica Laboratorio di Fisica 2 Mod.A - mat. dispari (gr.2) Prof. Corrado de Lisio.
In questo caso la sola differenza di fase che puo’ nascere e’ dovuta alla differenza dei cammini delle due onde sovrapposizione di onde progressive originate.
Le Fibre Ottiche 15/10/2013. Willebrord Snel van Royen, latinizzato come Willebrordus Snellius o semplicemente Snellius (Leida, 1580 – Leida, 30 ottobre.
Transcript della presentazione:

sviluppo storico della spettroscopia L’inizio: il problema del “colore” Il colore “è contenuto” nella luce o nei corpi? *1660 Newton studia la rifrazione e scopre gli spettri  il colore è “contenuto” nella luce, perché il vetro trasparente non può “aggiungere” il colore angolo di deviazione rosso violetto tuttavia … da dove proviene il “colore” delle fiamme? StrII-spettr1-1

sviluppo storico della spettroscopia *1752 Melville scopre gli spettri a righe e descrive la riga gialla della fiamma sodio  il “colore” è contenuto anche nei corpi? Spettri di vapori di mercurio e di sodio prisma o reticolo spettroscopio riga “gialla” del sodio StrII-spettr1-2

sviluppo storico della spettroscopia *1800 Herschel scopre l’infrarosso nella radiazione solare e Ritter scopre l’ultravioletto nelle proprietà fotochimiche di Ag Cl infrarosso angolo di deviazione rosso violetto StrII-spettr1-3

L’indice di rifrazione l’indice di rifrazione n: - dipende dalla lunghezza d’onda della luce - legge di Snell: ni= indice di rifrazione del mezzo in cui viaggia il raggio incidente nr= indice di rifrazione del mezzo in cui viaggia il raggio rifratto L’indice di rifrazione i r StrII-spettr1-4 Hal. 42-2; 43-2

se ni > nr, per raggi con sen i = nr /ni si ha riflessione totale fibra ottica Hal. 42-2; 43-2 StrII-spettr1-5

indice di rifrazione e spettri violetto dipendenza dell’indice di rifrazione dalla lunghezza d’onda: - il “rosso” ha indice di rifrazione minore del violetto, quindi è meno deviato rosso infrarosso angolo di deviazione rosso violetto StrII-spettr1-6 Hal. 43

velocità della luce nel vuoto: c = 3108 m/s (prime stime quantitative: Roemer, fine seicento, Bradley 1729) velocità della luce in un mezzo di indice di rifrazione n: v = c / n dalle equazioni di Maxwell: in un dielettrico di costante dielettrica relativa r e permeabilità magnetica relativa r: i r A * 1650 principio di Fermat o del “tempo minimo”: per andare dal punto A al punto B la luce “sceglie il percorso” lungo il quale impiega il minimo tempo  legge di Snell comincia a farsi strada l’idea che il “raggio” è qualche cosa di più di un “corpuscolo” di luce B StrII-spettr1-7 Hal. 42-2; 43-3

* 1678 principio di Huygens: la luce consiste di “onde sferiche” di una certa “lunghezza d’onda ”, tutti i punti di un “fronte d’onda” all’istante t possono essere considerati centro del nuovo fronte d’onda all’istante t’ le onde  “lunghezza d’onda”   distanza fra due “creste”  “periodicità spaziale” Hal. 43-3 StrII-spettr1-8

La rifrazione secondo Huygens la frequenza f non cambia quando si passa dall’aria al vetro v1 = velocità nell’aria  1 = v1 / f = lunghezza d’onda nell’aria v2 = velocità nel vetro  2 = v2 / f = lunghezza d’onda nel vetro v1 > v2  1 > 2 per mantenere il fronte dell’onda, deve cambiare la direzione  legge di Snell StrII-spettr1-9 Hal. 43-3

sviluppo storico della spettroscopia: dal qualitativo al quantitativo *1801 Young calcola la lunghezza d’onda usando dati di Newton di interferenza da lamine sottili d raggio incidente (1) (2) 2d = differenza di cammino fra il raggio (2) e il raggio (1)  si assegna al colore la “lunghezza”  = 2d interferenza fra i raggi (1) e (2): i due raggi si “sommano” ma in un modo che dipende dalla “fase” relativa: - raggi in “fase”: hanno percorso cammini che differiscono di un multiplo intero di   interferenza costruttiva  le ampiezze si sommano - raggi in “opposizione di fase”: hanno percorso cammini che differiscono di un multiplo semintero di   interferenza distruttiva  le ampiezze si sottraggono Hal. 45 StrII-spettr1-10

esperimenti di interferenza da due fenditure interferenza di onde sulla superficie di acqua causate da due ostacoli interferenza da doppia fenditura: immagine che si osserva sullo schermo y massimo centrale massimi laterali: si formano a una distanza regolare y rispetto al massimo centrale Hal. 45 StrII-spettr1-11

calcolo della figura di interferenza differenza di cammino in P fra i due raggi che hanno percorso i cammini r1 ed r2: in P i due raggi sono “in fase” e quindi interferiscono costruttivamente se: con m intero; ne segue la condizione di Bragg: Hal. 45 StrII-spettr1-12