Bit singolo e burst u un canale che trasmette voce tollera bene gli errori distribuiti uniformemente –perche’ errori singoli hanno effetti simili al rumore.

Slides:



Advertisements
Presentazioni simili
Differenza tra comunicazione seriale e parallela
Advertisements

Torniamo al primo problema. Come fare acquisti sicuri via Internet? Come trasmettere informazioni in modo riservato?
Teoria dei codici correttori d'errore
A. Martini INTERFERENZA.
Trasformazioni nello spazio dei colori
Rappresentazione dei dati e codifica delle informazioni
Tecniche di compressione dei dati
Le Informazioni e la loro Rappresentazione nei calcolatori
Stime per intervalli Oltre al valore puntuale di una stima, è interessante conoscere qual è il margine di errore connesso alla stima stessa. Si possono.
E.Mumolo. DEEI Reti di calcolatore e Applicazioni Telematiche – Livello Dati Lezioni di supporto al corso teledidattico E.Mumolo. DEEI.
Codifica di linea La rappresentazione di dati numerici con segnali numerici e’ normalmente fatta tramite sequenze di impulsi discreti di tensione di una.
INTERFERENZA A. Martini Supponiamo di avere due sorgenti di onde, puntiformi, in fase, di uguale lunghezza donda.
5-1 Protocolli ad accesso multiplo Crediti Parte delle slide seguenti sono adattate dalla versione originale di J.F Kurose and K.W. Ross (© All.
Hash Tables Indirizzamento diretto Tabelle Hash Risoluzioni di collisioni Indirizzamento aperto.
Informatica Industriale Monica Bianchini Dipartimento di Ingegneria dellInformazione Università degli Studi di Siena.
Sistemi e Tecnologie della Comunicazione
Sistemi e Tecnologie della Comunicazione
Sistemi e Tecnologie della Comunicazione
Sistemi di Radiocomunicazioni II parte
Esercizio 1 Un sistema di multiplazione TDM presenta una trama di 10 slot e in ciascuno slot vengono trasmessi 128 bit. Se il sistema è usato per multiplare.
Esercizio 1 Un sistema di multiplazione TDM di velocità pari a 2Mb/s trasporta canali vocali codificati a 16 kb/s più un canale dati a 112 kb/s. Si indichi.
Corso di Tecniche e Sistemi di trasmissione Fissi e Mobili
ANALOGICO-DIGITALI (ADC) DIGITALE-ANALOGICI (DAC)
Gestione dei dischi RAID
Corso di Informatica per Giurisprudenza
I CODICI.
Disco magnetico (2) Ciascuna traccia è divisa in settori
CODICI Si ringrazia il prof. Di Santo per aver gentilmente messo a disposizione il proprio materiale per la preparazione di alcune delle slides presenti.
Codici binari decimali
Teoria dei codici correttori d'errore
Sistema di comunicazione
Nuova tipologia di ruolo segreteria LA SEGRETERIA LIGHT a cura del Servizio per il Personale.
Ingegneria della conoscenza e sistemi esperti Dario Bianchi, 1999 Risoluzione di problemi e ricerca.
IL MODEM Che cos’è? A cosa serve? Che problemi risolve? Come comunica?
Limiti al trasferimento di informazione u Il tempo necessario per trasmettere dellinformazione dipende da: –la velocita di segnalazione (cioe quanto velocemente.
LA CRITTOGRAFIA QUANTISTICA
Metodo della moltiplicazione
Reti di CalcolatoriAndrea Frosini1 Reti di Calcolatori a.a. 2005/06 Lezione 7.
Reti di CalcolatoriAndrea Frosini1 Reti di Calcolatori a.a. 2005/06 Esercizi.
CORSO DI CRITTOGRAFIA Quinto incontro PROGETTO LAUREE SCIENTIFICHE
Radix-Sort(A,d) // A[i] = cd...c2c1
Federico Batini Item analisi Federico Batini
Parte Terza: Codificare l’informazione
Un modem, una scheda di rete, o comunque una unità di comunicazione tra calcolatori elettronici, trasmettendo uninformazione, a causa di disturbi esterni,
1 Applicazione di videoconferenza in ambiente Multicast con supporto per il protocollo di controllo di congestione RLC Giansalvo Gusinu Relatori: Prof.
Introduzione al controllo derrore. Introduzione Quando dei dati vengono scambiati tra due host, può accadere che il segnale venga alterato. Il controllo.
Tecniche di progettazione Fault Tolerant
TESINA DI SISTEMI.
Implementazione di dizionari Problema del dizionario dinamico Scegliere una struttura dati in cui memorizzare dei record con un campo key e alcuni altri.
Laurea Ing EO/IN/BIO;TLC D.U. Ing EO 6 PULSE CODE MODULATION (PCM)
Rappresentazione dell’informazione nel calcolatore.
LUCIDI dell'insegnamento di COMUNICAZIONI ELETTRICHE eo/in/bi

Sistemi Elettronici Programmabili7-1 Sistemi Elettronici Programmabili Collegamenti seriali e paralleli.
Fondamenti di Informatica1 Memorizzazione su calcolatore L'unità atomica è il bit (BInary DigiT) L'insieme di 8 bit è detta byte Altre forme di memorizzazione:
AVVOLGIMENTI A CAVE FRAZIONARIE
Presenta: Liceo Classico Scientifico “Giosuè Carducci” Nola (Na) Presenta:
Rappresentazione dell'informazione
AUTRONICA9.1 Autronica LEZIONE N° 9 Conversione da base 2 a base 8Conversione da base 2 a base 8 Conversione da base 2 a base 16Conversione da base 2 a.
Codici prefissi Un codice prefisso è un codice in cui nessuna parola codice è prefisso (parte iniziale) di un’altra Ogni codice a lunghezza fissa è ovviamente.
La codifica dei numeri.
Conversione binario-ottale/esadecimale
Flusso di Costo Minimo Applicazione di algoritmi: Cammini Minimi Successivi (SSP) Esercizio 1 Sia data la seguente rete di flusso, in cui i valori riportati.
Informatica Lezione 3 Psicologia dello sviluppo e dell'educazione (laurea magistrale) Anno accademico:
Sistemi e Tecnologie della Comunicazione
Sistemi e Tecnologie della Comunicazione
Come migliorare le prestazioni di un codice di dinamica molecolare.
Implementazioni di un analizzatore di protocollo Esistono quattro fondamentali tradeoff per la realizzazione di un analizzatore di protocollo:  Analisi.
Regressione: approccio matriciale Esempio: Su 25 unità sono stati rilevati i seguenti caratteri Y: libbre di vapore utilizzate in un mese X 1: temperatura.
Transcript della presentazione:

Bit singolo e burst u un canale che trasmette voce tollera bene gli errori distribuiti uniformemente –perche’ errori singoli hanno effetti simili al rumore di fondo u un canale dati tollera meglio gli errori burst, cioe’ una sequenza di errori vicini –perche’ impediscono la trasmissione corretta di una quantita’ limitata di frame (frame e’ un’insieme di bit che vengono trattati come un solo pacchetto) u i burst sono piu’ difficili da individuare e correggere

Cause di errore u rumore “termico” u rumore causato da interferenze u perdita di sincronizzazione

“Error detection” e “error correction” u l’idea base di tutte le tecniche e’ di aggiungere ridondanza ai dati u Detection significa accorgersi di errori di uno o piu’ bit e segnalarli all’applicazione u Correction significa poter correggere in tempo reale uno o piu’ bit senza che l’applicazione se ne accorga

Codifiche u La ridondanza e’ aggiunta codificando i dati da trasmettere e decodificandoli all’arrivo –codifica puo’ significare sia aggiungere dei bit che completamente cambiare i dati

Block code u i block code aggiungono a ogni frame o parte di frame, es. ad ogni carattere, dei bit di ridondanza –terminologia coerente con il testo: m bit di dati, r bit di ridondanza (check bit), n bit totali, i dati codificati, di lunghezza n=r+m bit, si chiamano codeword

Parita’ (esempio di block code) u il codice piu’ semplice e meno costoso –aggiunge un bit che rende la sequenza di bit pari (o dispari), cioe’ richiede solo un bit in piu’ u error detection, niente correction u se il numero degli errori e’ pari non funziona correttamente –non funziona bene con burst u usa un semplicissimo circuito di generazione e controllo che non richiede buffering

Distanza di Hamming: u numero di bit diversi tra due codeword (ovviamente di dimensioni identiche) u si calcola facendo X-OR bit a bit e contando il numero di 1 nel risultato u se la Hamming distance e’ d occorrono d errori per trasformare un codice in un’altro

Spazio dei codeword u Dato un codeword di n bit vi saranno ovviamente 2 n possibili codeword u Di questi 2 m saranno “legali” (cioe’ i codeword che si possono trasmettere) e gli altri indicheranno la presenza di errori u Meno sono i codeword legali rispetto all’insieme dei codeword, piu’ e’ possibile riconoscere e correggere errori –la semplice parita’ aggiunge solamente un codice illegale per ciascun codice legale, quindi molti errori multipli “vanno a cadere” su codici legali

Correzione di errore, esempio u rappresentiamo 1 con 111 e 0 con 000 –n=3, m=1, r=2 –Hamming distance=3 u se trasmettiamo 000 e la linea introduce 1 bit di errore i codici possibili sono tre: –ciascuno di questi codici e’ a distanza 1 dal codice corretto e a distanza 2 dal codice legale non corretto –SE assumiamo che ci sia stato un bit di errore possiamo correggere ciascuno di questi codeword a 000 –MA se ci sono due bit di errore la correzione e’ sbagliata!

Correzione di errore, esempio cont. u se trasmettiamo 000 e la linea introduce 2 bit di errore i codici possibili sono tre: –questi codici illegali sono piu’ vicini al codice sbagliato che a quello giusto –sappiamo che c’e’ stato un errore (di uno o due bit) ma non possiamo correggerlo correttamente a meno di essere sicuri che un errore di 2 bit ha probabilita’ bassa

Numero minimo di bit u Supponiamo di voler correggere errori di 1 bit (n bit totali, m dati, r controllo) –Ciascuna parola legale avra’ n parole illegali vicine che si ottengono cambiando 1 bit della parola legale: quindi le configurazioni sono n+1 per ciascuna delle 2 m configurazioni legali –Quindi: (n+1) 2 m <= 2 n Se n = m+r (m + r + 1) <= 2 r Fissato m viene fissato il limite inferiore di r per correggere errori di un bit

Bit necessari per correggere errori di 1 bit u Un codice che soddisfa questa tabella si puo’ trovare con l’algoritmo di Hamming

In generale... u per riconoscere d errori ci vuole un codice con le configurazioni legali a distanza d+1 u per correggere d errori ci vuole un codice con le configurazioni legali a distanza 2d+1 –nell’esempio precedente la distanza e’ 3 e quindi si possono riconoscere 2 errori o correggere 1 errore

CRC u Error detecting –bit singolo –quasi tutti gli errori doppi –un numero dispari qualunque di errori –burst al massimo lunghi quanto il “grado” del generatore, tipicamente –burst molto lunghi se distribuiti casualmente u facile da calcolare