Università degli Studi di Parma

Slides:



Advertisements
Presentazioni simili
I bridge Standard IEEE 802.1D.
Advertisements

Reti Fotoniche (Optical Networks) Gruppo Reti Politecnico di Torino- Dipartimento di.
Reti Fotoniche (Optical Networks) Fabio Neri Politecnico di Torino
LE RETI Modello OSI e TCP/IP LE RETI Modello OSI e TCP/IP Maura Zini.
IL cavo UTP Il cavo più utilizzato per il cablaggio di una lan è il cavo UTP per le sue ridotte dimensioni e la facilità di installazione.
Realizzato da: Accurso Margherita VDp A.S. 2007/2008 GENNAIO
Architettura di rete Le reti sono sempre organizzate a livelli
5-1 Protocolli ad accesso multiplo Crediti Parte delle slide seguenti sono adattate dalla versione originale di J.F Kurose and K.W. Ross (© All.
5-1 Interconnessione di LAN Crediti Parte delle slide seguenti sono adattate dalla versione originale di J.F Kurose and K.W. Ross (© All Rights.
I modelli di riferimento OSI e TCP/IP
Ethernet Crediti Parte delle slide seguenti sono adattate dalla versione originale di J.F Kurose and K.W. Ross (© All Rights Reserved)
La rete in dettaglio: rete esterna (edge): applicazioni e host
LE RETI INFORMATICHE.
Introduzione alle Architetture di Rete Enrica Antonioli Universita degli Studi di Ferrara
Moving Moving Young Young Turin Turin Hydrogen Hydrogen Olympic Olympic Safe RETE MANET informazioni in movimento.
La rete del futuro nell’autonomia scolastica
Reti e Sistemi operativi
Reti di Calcolatori Domande di riepilogo Terza Esercitazione
Reti di Calcolatori Domande di riepilogo Quarta Esercitazione
Reti di Calcolatori Seconda Esercitazione
Reti di Calcolatori Domande di riepilogo Quinta Esercitazione
Architettura FDDI (Parte Prima).
IDUL 2012 RETI E PROTOCOLLI. INTERNET.. IDEE PRINCIPALI IN QUESTA LEZIONE Reti: Aspetto logico della rete e tipologie: peer-to-peer, a hub, a bus Trasmissione.
Corso di Informatica Corso di Laurea in Conservazione e Restauro dei Beni Culturali Gianluca Torta Dipartimento di Informatica Tel: Mail:
Facoltà di Economia, Università di Roma
Reti di Calcolatori IL LIVELLO RETE.
Concetti introduttivi
Reti di Calcolatori IL LIVELLO RETE.
Interventi sul sistema informativo aziendale
Univ. Studi di Roma FORO ITALICO Prof. Stefano Razzicchia 1 UNIVERSITA STUDI DI ROMA FORO ITALICO Corso di Laurea Triennale INFORMATICA Lez. 6.
Corso di Informatica per Giurisprudenza Lezione 7
LE RETI INFORMATICHE 1. Introduzione alle reti 2. Topologia della rete
La rete di istituto Maninder Bansal 5Bz Vital Ivo 5Bz Anno scolastico 2005/06.
Il commutatore o SWITCH Gli Switch sono efficienti alternative agli hub, in quanto sono in grado di instradare la trasmissione di un nodo direttamente.
Il modello di riferimento OSI
Una rete locale o LAN è un insieme di sistemi informatici connessi tra loro nellambito di uno spazio limitato (una stanza o un edificio). Si utilizza per.
Reti di calcolatori 14 novembre 2003 INFORMATICA GENERALE Scienze per Operatori dei Servizi Giuridici Anno Accademico
Informatica Lezione 9 Scienze e tecniche psicologiche dello sviluppo e dell'educazione (laurea triennale) Anno accademico:
Corso di Laurea in Conservazione e Restauro dei Beni Culturali
Reti di Calcolatori ed Internet Fabio Massimo Zanzotto.
L’architettura a strati
L O STACK TCP/IP. LAN LAN è un sistema di comunicazione che permette ad apparecchiature indipendenti di comunicare tra loro, entro un’area limitata, utilizzando.
Componenti della rete Lezione 3.
Reti di Calcolatori Terza Esercitazione
Tipi e topologie di LAN Lezione 2.
Reti di computer Non esiste una classificazione univoca delle reti ma due aspetti hanno un particolare importanza Tecnologia di trasmissione Scala.
RETI DI CALCOLATORI polito. it/bartolomeo
Reti di computer Condivisione di risorse e
INSTALLAZIONE DI UNA RETE LOCALE
Livello 3 Network (Rete)
Prof. ing. Paolo Bidello AA 2005/2006 Laboratorio Informatico Promemoria degli argomenti: Reti locali (LAN)
Apparati di rete. Una infrastruttura di rete necessita non solo di un cablaggio e di armadi, ma anche di dispositivi attivi quali switch, router, firewall,
Fondamenti di Informatica1 Tipi di reti Cluster: –elaborazione parallela, rete interna Rete locale: –edificio, rete privata Rete metropolitana: –città,
Reti di Computer Telematica Neologismo che evidenzia l’integrazione tra tecnologie informatiche e tecnologie delle telecomunicazioni. Reti Un insieme.
Sistemi e Tecnologie della Comunicazione
Strato di accesso alla rete (network access layer); comprende le funzioni che nel modello OSI sono comprese negli strati fisico, di collegamento e parte.
Sistemi e Tecnologie della Comunicazione
Informatica 3 V anno.
Corso "RouterOS in Pratica"
ARCHITETTURA DI RETE Protocollo: insieme di regole che governano le comunicazioni tra i nodi di una rete. La condivisione di queste regole tra tutte gli.
Applicazione Presentazione Sessione Trasporto Rete Data link Fisico OSI Processo / Applicazione Trasporto Rete- Internet Interfaccia di.
LE RETI Cos’è una rete Un po’ di storia Classificazione delle reti Mezzi fisici di trasmissione Modalità di trasmissione Topologia delle reti Internet.
Trasmissione. Codifica Elettrica I segnali si propagano su un mezzo fisico modulando onde elettromagnetiche variando voltaggi I dati binari devono essere.
Implementazioni di un analizzatore di protocollo Esistono quattro fondamentali tradeoff per la realizzazione di un analizzatore di protocollo:  Analisi.
1 Il livello transport. Concetti fondamentali - Canale logico e canale fisico 2 Quando un segnale deve essere trasmesso, viene inviato su un Canale, cioè.
 La topologia della rete definisce il livello fisico della rete (configurazione elettrica e percorso logico del flusso d’informazione);  Un analizzatore.
II PROVA Svolgimento tramite protocollo ISO/OSI. I LIVELLO : LIVELLO FISICO Scelta del mezzo fisico; tenere conto degli standard IEEE Procedura di codifica.
VLAN Virtual LAN.
CONCETTI DI RETI: TOPOLOGIE, ARCHITETTURE E STANDARD FACOLTA’ DI INGEGNERIA Corso di Laurea Specialistica in Ingegneria delle Telecomunicazioni Docente:
LE RETI Cos’è una rete Un po’ di storia Classificazione delle reti Mezzi fisici di trasmissione Modalità di trasmissione Topologia delle reti Internet.
Transcript della presentazione:

Università degli Studi di Parma Reti Locali

LAN (Local Area Network) Rete di calcolatori Rete a commutazione di pacchetto; Reti Private; Alte prestazioni; Basso tasso di errore; Basso Costo. Sistema di comunicazione che permette ad apparecchiature indipendenti di comunicare tra di loro entro un'area delimitata utilizzando un canale fisico a velocità elevata e con basso tasso di errore.

Cablaggio strutturato Il modello oggi universalmente accettato separa la fonia dai dati. FONIA TD Building Automation PABX LAN Cablaggio Strutturato

Le LAN e OSI 7 6 5 4 3 2 1 Applicazione Presentazione Sessione Trasporto 3 Rete 2 LAN Data Link WAN 1 Fisico

Il Data Link nelle LAN Le LAN sono reti di tipo broadcast in cui ogni stazione riceve i frame inviati da tutte le altre stazioni. Il broadcast può essere realizzato sia con topologie broadcast quali il bus, sia con topologie punto a punto quali l'anello. I canali trasmissivi sono sufficientemente affidabili e non è necessario in genere correggere gli errori a questo livello.

L’arbitraggio del Canale Nelle LAN c’è un unico canale trasmissivo condiviso da tutte le stazioni. Occorre avere un algoritmo per: in trasmissione: determinare chi deve/può utilizzare il canale; in ricezione: discriminare quali messaggi sono destinati alla stazione tramite l’utilizzo di indirizzi. Questo algoritmo viene indicato con il nome di Media Access Control (MAC).

Ethernet Rete Locale proposta da Digital, Intel, Xerox (DIX). È una LAN concepita per topologie a bus.

Caratteristiche di Ethernet Protocollo non deterministico con tempo di attesa non limitato superiormente le cui caratteristiche sono: topologia a bus; velocità trasmissiva inizialmente di 10 Mb/s; throughput massimo di 4 Mb/s; arbitraggio del canale tramite contesa; numero massimo di stazioni uguale a 1024.

Algoritmo di trasmissione di Ethernet Listening Before Talking: Ogni stazione che debba trasmettere ascolta il bus e trasmette solo se questo è libero. Listening While Talking: Appena iniziata la trasmissione si può verificare una collisione a causa del tempo di propagazione del segnale non nullo. Per evidenziare l'esistenza di una collisione la stazione trasmittente ascolta il bus anche mentre trasmette. In caso di collisione si sospende la trasmissione. Back-off: In caso di collisione la stazione ripeterà il tentativo dopo un tempo casuale determinato da un algoritmo di back-off. La trasmissione può essere ritentata al massimo 16 volte.

Esempio di LAN Ethernet Calcolatore Calcolatore Calcolatore . . . Scheda Ethernet Scheda Ethernet Scheda Ethernet Ripetitore Cavi Coassiali Calcolatore Scheda Ethernet Configurazione Osservabile fino alla Fine degli anni 90 Transceiver

IEEE 802

ISO/OSI, IEEE 802, EIA/TIA 568 7 6 5 4 3 2 1 Applicazione Presentazione 6 Sessione 5 Trasporto 4 P A B X . Rete 3 Data Link IEEE 802 2 Fisico 1 EIA/TIA 568 (*) (*) in futuro ISO/IEC 11801 WAN

(Local and Metropolitan Area Network) Il progetto IEEE 802 (Local and Metropolitan Area Network) FDDI 802.3 802.4 802.5 802.2 Logical Link Control ISO 8802.2 802.6 LIVELLO NETWORK DATA LINK FISICO LLC MAC CSMA/CD TOKEN BUS RING DQDB Interfaccia unificata con il livello network Tecnologie trasmissive differenziate ISO 8802.3 8802.4 8802.5 8802.6 9314

IEEE 802.1 IEEE 802.1 è lo standard che contiene le specifiche generali del progetto 802. IEEE 802.1 è uno standard composto da molte parti tra cui: 802.1 Part A: Overview and Architecture; 802.1 Part B: Addressing Internetworking and Network Management; 802.1 Part D: MAC Bridges.

Il Data Link nelle LAN Le LAN sono reti di tipo broadcast in cui ogni stazione a livello data link riceve i frame inviati da tutte le altre stazioni. Il data link broadcast può essere realizzato sia con topologie broadcast quali il bus, sia con topologie punto a punto quali l'anello. I canali trasmissivi sono sufficientemente affidabili e non è necessario in genere correggere gli errori a questo livello.

I Sottolivelli Per tener conto delle precedenti peculiarità il progetto IEEE 802 ha suddiviso il livello data link in due sottolivelli: LLC (Logical Link Control) è interfaccia comune a tutte le LAN verso il livello di rete. I servizi e i protocolli di questo sottolivello sono descritti nello standard IEEE 802.2. MAC (Media Access Control) è specifico per ogni LAN e risolve il problema della condivisione del mezzo trasmissivo. Esistono vari tipi di MAC: ad allocazione di canale fissa o dinamica, deterministici o statistici, ecc.

IEEE 802.3 (CSMA/CD) Topologia a bus. Cablaggio a bus o stella. Protocollo non deterministico basato su arbitraggio del canale trasmissivo tramite contesa. Velocità trasmissiva di 10 Mb/s. Throughput massimo di 4 Mb/s. Evoluzione della rete Ethernet proposta da Digital, Intel, Xerox (DIX).

IEEE 802.4 (Token Bus) Topologia a bus. Cablaggio a bus. Protocollo deterministico basato su arbitraggio del canale trasmissivo tramite token. Velocità trasmissiva di 10 Mb/s. Throughput massimo di 8 Mb/s. Standard di rete utilizzato in ambito di fabbrica specialmente in relazione al MAP (Manufacturing Automation Protocol).

IEEE 802.5 (Token Ring) Topologia a anello. Cablaggio a stella o doppio anello. Protocollo deterministico basato su arbitraggio del canale trasmissivo tramite token. Velocità trasmissiva da 4 o 16 Mb/s. Throughput massimo da 3 o 12 Mb/s. Evoluzione della rete Token Ring proposta da IBM in alternativa a Ethernet.

IEEE 802.6 DQDB (Distributed Queue Dual Bus) Topologia a doppio bus. Cablaggio a doppio bus o doppio anello. Protocollo deterministico basato su arbitraggio del canale a prenotazione. Velocità trasmissiva sino a 155 Mb/s. Standard per reti metropolitane approvato anche in sede CCITT.

IEEE 802.3

IEEE 802.3 È l'evoluzione della rete Ethernet creata da Digital, Intel e Xerox all’inizio degli anni ‘80. Nasce come un'architettura con topologia a bus su cavo coassiale di rame. È disponibile anche con topologie a stella, sia su rame sia su fibra ottica. La velocità trasmissiva è di 10Mb/s Oggigiorno con FastEthernet 100Mb/s IEEE 802.3 è interoperabile con Ethernet.

Standard ANSI/IEEE ed ISO/IEC IEEE 802.3 e Ethernet LIVELLO NETWORK 802.2 Logical Link Control ISO 8802.2 LIVELLO DATA LINK LLC Ethernet versione 2.0 802.3 ISO 8802.3 802.5 ISO 8802.5 FDDI ISO 9314 MAC LIVELLO FISICO CSMA/CD CSMA/CD Ethernet V 2.0 di: Digital, Intel, Xerox Standard ANSI/IEEE ed ISO/IEC

CSMA/CD:Trasmissione senza collisione Qualcuno sta parlando? Fase 1 Ascolto Silenzio Parlo e ascolto! Fase 2 Invio del messaggio Messaggio Messaggio

CSMA/CD: Trasmissione con collisione Qualcuno sta parlando? Qualcuno sta parlando? Fase 1 Ascolto Silenzio Parlo e ascolto! Parlo e ascolto! Collisione Fase 2 Invio del messaggio Messaggio 1 Messaggio 2

CSMA/CD: Back-Off L'algoritmo di back-off usato è il truncated binary exponential. La trasmissione può essere ritentata al massimo 16 volte. Una stazione attende un tempo T = s * r, dove: s è lo slot time (512 tempi di bit); r è scelto casualmente nell'intervallo [0, 2k] dove k è il minimo tra n e 10.

Caratteristiche Protocollo semplice e totalmente distribuito. Per garantire buone prestazioni (collisioni ridotte) bisogna non superare un carico: medio del 30% (3Mb/s); di picco del 60% (6Mb/s). Non avendo un ritardo massimo non è adatto ad applicazioni real-time (anche se è stato comunque usato in reti di fabbrica). È lo standard per LAN più diffuso quindi disponibilità di componenti a basso costo.

Inter-Packet Gap Inter-Packet Gap min 9.6 s ........... Pacchetto 1 Pacchetto N Inter-Packet Gap min 9.6 s

Round Trip Collision Delay È il tempo massimo che può intercorrere tra quando una stazione trasmette il primo bit e quando percepisce una collisione. A B Trasmissione da A a B Collisione da B ad A

Roud Trip Collision Delay È fissato dallo standard in 49.9 s. La durata minima di un pacchetto è 51.2 s. La lunghezza minima di un pacchetto è di 512 bit (64 byte). Non vi è quindi ambiguità tra pacchetti e frammenti di collisione.

Ethernet o IEEE 802.3? Livello Network IEEE 802.2 MAC Logical Link Control MAC Ethernet v.2.0 MAC IEEE 802.3 Fisico Ethernet v.2.0 Fisico IEEE 802.3

Livelli Fisici di IEEE 802.3 IEEE 802.3 supporta i seguenti livelli fisici: 10base5 - Coassiale, 500 m; 10base2 - Coassiale, 185 m; 10baseT - Doppino, 100 m; FOIRL - Fibra Ottica, 1000 m; 10baseF - Fibra Ottica, sino a 2000 m. IEEE 802.11 Wi-Fi – campo elettromagnetico come livello fisico

10base5 TERMINATORE 50 ohm TRANSCEIVER BARREL CONNECTOR STAZIONE CAVO TRANSCEIVER CAVO DROP CAVO AUI Cavo Coassiale 50 ohm

10base5 Lunghezza massima cavo 500 m; Distanza minima tra i transceiver 2.5 m; Numero massimo di transceiver 100; Lunghezza massima transceiver cable 50 m; Minima velocità di propagazione 77%.

10base2 Cavo ThinEthernet (RG58) Cavo thin Cavo "fine" Stazione con transceiver incorporato STAZIONE CAVO TRANSCEIVER o CAVO DROP o CAVO AUI STAZIONE Cavo Coassiale 50 ohm CONNETTORE A T

10base2 Lunghezza massima del cavo 185m; Numero massimo di stazioni 30; Distanza minima tra le stazioni 0.5 m; Lunghezza massima transceiver cable 50 m; Transceiver connessi tagliando il cavo, "crimpando" i connettori e connettendo i due spezzoni con un T-connector; Costo cavo < 1000 lire/m; Minima velocità di propagazione 65 %.

10baseT Standard per 802.3 su UTP (Unshielded Twisted Pair) concepito per applicazioni d'ufficio. Caratteristiche: utilizzo di UTP a basso costo; facilità di connettorizzazione (RJ45); prestazioni uguali a quelle del cavo thick (10Mb/s).

10baseT Standard di tipo punto a punto. Richiede l'adozione di centro stella attivi (repeater, HUB) per collegare le stazioni. HUB

10baseT Concepito per adattare 802.3 a cablaggi strutturati (EIA/TIA 568) La lunghezza massima consigliata è 100 m (EIA/TIA 90m più i cavetti di patch). Cavo UTP 100  +/- 15 da 1 a 16 MHz: vengono usati: doppini 24 AWG (tipico); una connessione si basa su due doppini (due coppie), una per TX e una per RX. Velocità di propagazione minima 58.5%.

Spinotto (plug) maschio Connettori per 10baseT Presa Femmina da parete Spinotto (plug) maschio volante Connettori RJ45 a otto fili

10baseT: coppie utilizzate TD+ TD- RD+ Non Utilizzato RD- 1 2 3 4 5 6 7 8 Jack Position Vista frontale del connettore Le coppie usate sono la 2 e la 3 secondo lo standard EIA/TIA 568 Le coppie 1 e 4 sono inutilizzate

10baseT: Funzione di Crossover 2 2 3 3 6 6 MAU CABLE MAU La funzione di crossover può essere implementata automaticamente nel MAU

10baseT: Funzionalità Trasmissione: il Media Attachment Unit MAU trasferisce i dati dal DTE al TP. Se non vi è nulla da trasmettere, trasmette sulla coppia TX un segnale di idle (TP_IDLE). Ricezione: il MAU trasferisce i dati dal TP al DTE. Loopback: il MAU rinvia al DTE una copia dei segnali trasmessi, quando sta trasmettendo e non sta ricevendo. SQE Test (HeartBeat): è implementata secondo lo standard IEEE 802.3.

10baseT: Funzionalità Rilevazione delle collisioni: il MAU rileva una collisione quando riceve simultaneamente dati dalla coppia Rx e dal DTE. Jabber: il MAU interrompe le trasmissioni quando eccedono la lunghezza massima consentita. Link Integrity Test: se un MAU non riceve dal TP nè pacchetti, nè segnali di TP_idle, entra in uno stato di Link Test Fail.

Dominio di Collisione Una collisione ha luogo se due o più stazioni sono nello stesso dominio di collisione e trasmettono contemporaneamente. Le stazioni separate da ripetitori sono nello stesso dominio di collisione. Le stazioni separate da bridge non sono nello stesso collision domain. I concentratori (HUB) si comportano normalmente come ripetitori, anche se è possibile inserire schede bridge.

Fast Ethernet 100baseT È un evoluzione di ethernet e in particolare di IEEE 802.3 10baseT che porta la velocità massima a 100Mb/s. Usa una topologia a stella con centro stella attivo rappresentato da un HUB. Utilizza come mezzi trasmissivi doppini UTP STP e fibra ottica. Lunghezza massima consigliata cavi 100 m. L’aumento di prestazioni è stato ottenuto: riducendo il tempo di trasmissione di un bit a un decimo di quello di Ethernet, e modificando il metodo di codifica.

Hub Coppie separate per transmettere e ricevere Il ripetitore nell’ HUB ritrasmette il segnale ricevuto su qualunque coppia di ingresso su tutte le coppie di uscita In pratica l’ HUB emula un canale di broadcast con le collisioni rilevate dai nodi riceventi.

High-Speed Backplane or Interconnection fabric Twisted Pair Ethernet hub (a)       Single collision domain switch High-Speed Backplane or Interconnection fabric (b)     Figure 6.56

Switched Ethernet Idea di base: migliorare il concetto di Hub Lo switch apprende le posizioni delle destinazioni memorizzando in una tabella dinamica le porte dell’indirizzo sorgente associato Lo switch può non dovere trasmettere in broadcast a tutte le porte di uscita. Può essere in grado di inviare la trama alla sola porta di destinazione  grosso vantaggio prestazionale rispetto all’HUB, se più transferimenti di trame possono attraversare concorrentemente lo switch.

Switched Ethernet Vantaggio se il bus interno dello switch può trasferire più di una trama in parallelo (linee separata per nodo/porta). In questo schema le collisioni sono ancora possibili quando due trame che arrivano contemporanemente sono destinati allo stesso nodo/ Ogni trasmissione parallela può avvenire alla massima velocità (10 o 100 Mb/s)

Switched Ethernet Hub Poichè I server sono spesso utilizzati da clienti multipli, si può utilizzare uno switching hub con una porta che opera ad una velocità maggiore delle altre porte Occorre una bufferizzazione interna per gestire la differenza di velocità tra le porte. Puo essere ulteriormente migliorato con la trasmissione full-duplex.

Internetworking

Internetworking Bridge, Router, Brouter e Gateway servono ad interconnettere reti diverse. L’interconnessione può avvenire su base locale o remota. Si collocano a livelli diversi del modello di riferimento OSI: I Bridge a livello 2; I Router e Brouter a livello 3; I Gateway a livello 7.

Differenze I Bridge: I Router: I Brouter: I Gateway: hanno algoritmi di instradamento molto semplici; si utilizzano normalmente per interconnessioni locali. I Router: hanno algoritmi di instradamento sofisticati; si utilizzano normalmente per interconnessioni geografiche. I Brouter: Per ogni protocollo è possibile definirne il funzionamento come: Router (solo per i protocolli di cui implementano l'algoritmo di routing); Bridge. I Gateway: si utilizzano per interconnettere architetture di rete diverse (es. SNA e TCP/IP).

BRIDGE Applicazione Applicazione Presentazione Presentazione Sessione Porta A LAN #1 Porta B LAN #2 Forwarding Data Base Bridge Processing Applicazione Applicazione Presentazione Presentazione Sessione Sessione Trasporto Trasporto BRIDGE Rete Rete Data Link Data Link Data Link Data Link Fisico Fisico Fisico Fisico

Bridge: Instradamento I bridge calcolano tabelle di instradamento usando un algoritmo molto semplice che funziona solo su reti con topologia ad albero. I bridge per operare su topologie magliate devono riportarle ad albero, eliminando i cammini eccedenti tramite un algoritmo di spanning tree. L’algoritmo di spanning tree opera periodicamente e in presenza di guasti riattiva automaticamente cammini precedentemente eliminati.

Transparent Bridge I transparent bridge non richiedono alcuna modifica del software di rete degli end node. I transparent bridge svolgono tre funzioni base: Ritrasmissione di pacchetti; Apprendimento di stazioni; Risoluzione di possibili maglie partecipando all'algoritmo di spanning tree.

Bridge Forwarding Frame received Begin without error on port x Destination found in forwarding data base ? N Y Count frame discarted Y Forward Frame in all LAN except X Direction equal to port x ? N Forward Frame to correct LAN

Bridge Learning From Bridge forwarding N Source found in forwarding data base ? Y Add Source to DB with timer and direction Update direction and timer Finished

Algoritmo di Spanning Tree Lo Spanning Tree (IEEE 802.1D) trasforma dinamicamente (periodicamente) una topologia qualsiasi in un albero. L’algoritmo opera nei seguenti passi: Root Bridge selection; Root Port selection; Designated/Blocking Port selection. Root Bridge selection Ogni bridge è caratterizzato da una root priority e da un indirizzo MAC (quello di una delle sue porte). É designato root bridge quello che ha root priority minore. In caso di parità quello che ha indirizzo MAC minore. Inizialmente ogni bridge assume di essere root ed invia le BPDU (Configuration Message). Quando un bridge riceve una BPDU con priority minore assume che il bridge mittente sia il root bridge. Solo il root-bridge continua a originare le BPDU.

Algoritmo di Spanning Tree Root Port selection Per ogni non-root bridge si identifica la root port, cioè la porta che ha il cammino di costo minimo con il root bridge. I costi sono associati alle porte. I costi dei cammini sono propagati tramite le BPDU originate dal root bridge. Designated/Blocking Port selection Qualora più porte non root siano collegate sulla stessa LAN solo quella con costo di percorso minore rimane attiva (forwarding), le altre vanno in blocking state.

Source Routing I Bridge Source Routing sono non trasparenti: derivati da Token Ring; non hanno tabelle di instradamento locali; necessitano di tabelle di instradamento sui nodi della LAN e quindi una modifica del software di rete. La stazione mittente determina a priori l'instradamento del messaggio includendolo in ogni pacchetto. L'instradamento è espresso come una serie di identificatori di anello e di bridge. Quando una stazione vuole “imparare” l'instradamento verso un'altra stazione invia un pacchetto di route location a cui il destinatario risponde. Il meccanismo ammette sino a 8 bridge in cascata.

Source Routing Campo opzionale RI (Routing Info) nel pacchetto MAC posto dopo i due indirizzi. Per indicare la presenza o l'assenza del campo RI si usa il primo bit a 1 del source address. Il primo bit a 1 ha normalmente il significato di indirizzo di multicast, cosa impossibile per un source address. DESTINATION ADDRESS SOURCE ADDRESS ROUTING INFO INFO

Routing Info É composto da un campo RC (Route Control) e n campi SN (Segment Number o Route Designator) con 0 <= n <= 8. RC contiene varie informazioni quali: Valore di n; Direzione (da source a destination o viceversa); Broadcast: pacchetto destinato a tutti i ring. Esempio con n = 3. ROUTE CONTROL SEGMENT NUMBER 1 SEGMENT NUMBER 2 SEGMENT NUMBER 3

Segment Number É un campo di 16 bit diviso in: 12 bit di RN (Ring Number); 4 bit di BN (Bridge Number). RN è assegnato dal network manager diverso per ogni ring. BN serve per discriminare tra bridge paralleli. R1 R2 B1 B2

Translating Bridge I Bridge conformi a IEEE 802.1D devono essere translating, cioè tradurre la busta di livello 2 ricevuta da una LAN nella busta di livello 2 da trasmettersi nell'altra LAN. Questo è critico quando si utilizzano bridge per interconnettere LAN di tipo diverso (es: 802.3 con 802.5) con lunghezza massima dei pacchetti diversa. La frammentazione dei messaggi è un compito tipico del livello 3.

Frammentazione I problemi si verificano principalmente passando da 802.5 o FDDI a 802.3: 802.3 ha un pacchetto max 1500 byte; 802.5 ha un pacchetto max 17946 byte; FDDI ha un pacchetto max 4500 byte. Ci sono protocolli quali il DECNET che non hanno questo problema in quanto non generano messaggi di lunghezza superiore a quella di 802.3. Altri, quali Il TCP/IP, devono realizzare la frammentazione a livello di bridge.

Filtri Quasi tutti i bridge hanno la capacità di filtrare il traffico in base al contenuto del pacchetto. I campi usati per il filtraggio sono: Indirizzo sorgente; Indirizzo destinatario; Protocol Type. I filtri possono essere: esclusivi; inclusivi.

Prestazioni di un Bridge Un bridge è caratterizzato da due parametri: il numero di pacchetti/secondo che può ricevere e processare; il numero di pacchetti/secondo che può inoltrare. In generale il primo numero è maggiore del secondo (si pensi a un bridge FDDI-802.3). Si parla di bridge full-speed quando questi due numeri sono uguali al massimo traffico teorico ricevibile contemporaneamente da tutte le porte.

Bridge Remoti I bridge possono essere utilizzati per collegare reti geografiche utilizzando: fibra ottica (sino a 40Km nel caso FDDI); linee telefoniche con velocità maggiori o uguali a 64kb/s ; fasci di microonde (difficile in Italia) sino a 10km; raggi laser (difficile in Italia del Nord) sino a 2km; reti veloci a commutazione di pacchetto: frame relay, SMDS, ATM. Vengono spesso utilizzati in luogo dei router: Sono trasparenti a tutti i protocolli (anche a quelli senza un livello 3!). Rispetto ai router: Non gestiscono topologie di complessità molto elevata; Non confinano i messaggi di multicast/broadcast; Non offrono il bilanciamento ottimale del traffico su rete geografica; Non gestiscono algoritmi sofisticati per uso di più link in parallelo.

ROUTER Applicazione Applicazione Presentazione Presentazione Sessione Trasporto Trasporto Rete Rete Rete Data Link Data Link Data Link Data Link Fisico Fisico Fisico Fisico

Router: caratteristiche Sono gli oggetti teoricamente più adeguati ad interconnettere LAN. Lavorano a Livello 3 (Network) del modello OSI. Sono limitati ad un solo o a pochi protocolli. Sono adeguati a gestire topologie anche molto complesse. Funzionano bene anche con linee lente. Utilizzano tutte le linee a disposizione nella rete. Non trasmettono il traffico di broadcast di livello 2 sulle linee. Permettono un routing di tipo gerarchico suddividendo la rete in aree.

Protocolli di livello network IP: appartiene allo standard TCP/IP; adottato nella rete Internet; riscuote i maggiori consensi. IS-IS Intermediate System to IS: è il protocollo standardizzato da OSI; è usato in Decnet fase V. Decnet fase IV: protocollo proprietario Digital; usato dall'omonima rete. SNA Systems Network Architecture protocollo proprietario IBM usato dall’omonima rete

Protocolli di livello network XNS protocollo proprietario Xerox usato dall’omonima rete usato dalle prime reti di PC AppleTalk protocollo sviluppato dalla Apple per le reti di Macintosh IPX: protocollo sviluppato da Novell derivandolo da XNS; usato come protocollo di default nelle reti Novell Netware (3.11, 3.12, 4.0, Lite). NETBEUI; protocollo di default nelle reti di PC IBM; protocollo di default nelle reti Microsoft Lan Manager (Windows NT, Windows for Workgroup).

Il livello Network Instrada i messaggi sulla rete. Provvedere a trovare instradamenti alternativi in caso di guasti. È molto sviluppato sugli IS (Intermediate System), meno sugli ES (End System). Può fornire sia servizi non connessi sia servizi connessi: Servizi connessi (CONS: Connection Oriented Services). Il CCITT e le PTT li implementano in reti dati a pacchetto quali quelle conformi al protocollo X.25 (ISO 8208), anche per ragioni di tariffazione a volume. Servizi non connessi (CLNS: Connectionless Services) o datagram. Sono adottati nelle reti proprietarie quali DECNET e TCP/IP e anche nelle reti OSI (ISO 8473).

End System ES ed Intermediate System IS ES realizzano tutti i sette livelli OSI ES è il termine ISO per “End Node”; DTE usato in X.25; Host usato in IP IS realizzano tipicamente fino al terzo livello OSI Tra due ES possono esserci diversi altri nodi che agiscono da intermediari e svolgono funzioni di instradamento; sono detti Intermediate System IS o router

Servizi Offerti Caratteristica CONS CLNS Connessione Richiesta Non possibile Indirizzi In fase di conness. In ogni pacchetto Ordine dei pacchetti Garantito Non garantito Controllo di Errore A livello Network a Livello Transport Controllo di Flusso Fornito Non Fornito Negoz. Parametri Sì No ID di connessione Sì No

Multiprotocol Router LAN #1 LAN #2 WAN #1 WAN #2 Algoritmo di calcolo della tabella di instradamento DECNET Processo di forwarding Tabella di TCP/IP OSI FDDI

Router e Bridge a confronto Indirizzamento: I router sono indirizzati esplicitamente, la presenza dei bridge (non source-routing) è ignorata dai nodi. Instradamento: I router usano molti tipi di informazioni, i bridge solo gli indirizzi di mittente e destinatario di livello 2. Buste: I router operano sulle buste di livello 3 e possono frammentare i messaggi per adattarli a reti con diverse lunghezze dei pacchetti (ethernet, token-ring, ...). I bridge non toccano mai il campo dati. Forwarding: I router inviano i messaggi cambiando gli indirizzi di livello 2. I bridge no. Priority: I router possono differenziare i messaggi per priorità. Security: In generale i router sono più sicuri poiché utilizzano più l'informazione.

Tecniche di instradamento Variano in funzione dell’architettura di rete. Esistono tre tecniche principali: Routing by network address Label swapping Source Routing Mittente e Destinatario del pacchetto vengono specificati scrivendo nel pacchetto di livello 3 il loro indirizzo. Gli IS usano l’indirizzo di mittente come chiave di accesso alla tabella di instradamento. Tecnica usata in IP, Decnet e OSI. Source routing.

Tecniche di instradamento Label swapping Generalmente usata nei protocolli connessi. L’instradamento viene deciso in fase di connessione ed identificato da una label. La label viene inserita nel pacchetto di livello 3 invece degli indirizzi. Ogni IS utilizza la label come chiave di accesso alla tabella di instradamento e la sostituisce con una nuova label. Adottata da APPN Advanced Peer-toPeer Networking e ATM. Source Routing L’instradamento viene deciso dalla stazione mittente. È una tecnica simile a quella usata nei bridge token ring. È impiegata in APPN+/HPR.

Architetture di rete Decnet IV OSI TCP/IP SNA User Application Application Transaction Service Netw. Appl. Presentation Service Presentation Service Session Session Data Flow Mana. Servi. half session End to End Transport Trans. Control Internetwork Virtual Route Routing Network path control Explicit Route Data Link Data Link Network Transm. Group Data Link Physical Physical Physical Le varie architetture di rete sono tra loro incompatibili a livello network

Indirizzi L’indirizzo di livello 2 MAC serve a discriminare il destinatario finale di un pacchetto nell’ambito di una LAN. L’indirizzo di livello 3 serve invece ad identificare il destinatario finale del pacchetto nell’ambito dell’intera rete. Un indirizzo MAC per ogni scheda di LAN. Un indirizzo di livello 3 per ogni nodo di rete (eccetto il TCP/IP che ha un indirizzo di livello 3 per ogni scheda di rete).

ES B invia un pacchetto all’ES A Source/Destination Service Access Point SSAP DSAP Content Delivery Network CDN Quattro fasi e tre diversi pacchetti (a) , (b) , (c) ) B genera un pacchetto di Liv3 con L3-DSAP=A e L3-SSAP=B ; B verifica che A non è sulla stessa LAN e quindi invia il messaggio a R2 specificando L2-DSAP=R2 e L2-SSAP=B (a) ) R2 (IS) riceve il pacchetto (a) e lo instrada sul CDN senza Liv2 perché il collegamento è punto-punto (b) ) R1 (IS) riceve il pacchetto (b) e lo invia sulla LAN indicando L2-DSAP=A (ottenuto mediante ARP da L3-DSAP) e L2-SSAP=R1 (c) ) A riceve il pacchetto (c) e lo rende disponibile al proprio livello 3

Calcolo delle tabelle di instradamento Tabella di instradamento Algoritmo di calcolo della tabella di Processo di Instradamento LAN WAN ARCHITETTURA ROUTER

Tabelle di instradamento Il livello network per instradare i pacchetti si basa sull'indirizzo del destinatario finale e su tabelle di instradamento presenti negli IS. Le tabelle di instradamento possono essere scritte manualmente o calcolate da algoritmi che imparano la topologia della rete e si adattano ai suoi cambiamenti. Solo gli IS sono tipicamente sede di tabelle di instradamento.

Scelta dell'Algoritmo Non semplice: più criteri di ottimalità spesso contrastanti. Ad esempio: minimizzare il ritardo medio di ogni pacchetto, massimizzare l'utilizzo delle linee. Complicata dalla presenza di un elevato numero di nodi collegati con una topologia qualsiasi. Algoritmi troppo complessi, operanti su reti molto grandi, potrebbero richiedere tempi di calcolo inaccettabili.