Reazioni acido-base TAMPONI Il potere tamponante di una miscela di un acido debole e della sua base coniugata cresce se il rapporto tra base ed acido tende ad 1, e se la concentrazione iniziale totale (base + acido) aumenta. Poiché in generale il potere tamponante di una miscela tra acido debole e base coniugata è elevato, tale miscela viene anche chiamata tampone (anche se, come visto, queste miscele non sono le uniche soluzioni che hanno un elevato potere tamponante).
Reazioni acido-base TAMPONI Considerazioni ulteriori sui tamponi (soluzioni contenenti un acido debole HA e la base coniugata A−) 1) Qual è il pH a cui un certo tampone mostra il massimo potere tamponante? Poiché il potere tamponante è massimo quando CHA = CA, il pH di massimo potere tamponante per ogni generica coppia acido-base si ha (per Henderson) quando [H3O+] = Ka, cioè quando pH = pKa
c) porre un'elevata concentrazione iniziale CHA + CA Reazioni acido-base TAMPONI Considerazioni ulteriori sui tamponi (soluzioni contenenti un acido debole HA e la base coniugata A−) 2) Supponiamo di dover preparare un “buon” tampone (cioè un tampone con elevato potere tamponante) ad un dato pH. Cosa si deve fare? a) si deve scegliere una coppia acido + base coniugata con pKa il più vicino possibile al pH voluto b) Calcolare (con Henderson) il rapporto tra CHA e CA che realizza il pH voluto c) porre un'elevata concentrazione iniziale CHA + CA
Reazioni acido-base TAMPONI Considerazioni ulteriori sui tamponi (soluzioni contenenti un acido debole HA e la base coniugata A−) 3) Come si può preparare un tampone che sia efficace (= che tamponi il pH) in un intervallo ampio di pH? Si può dimostrare che il potere tamponante è additivo, cioè si somma se sono presenti più coppie acido-base coniugate in soluzione. Se vi sono molte coppie acido-base coniugate in soluzione, e le loro Ka sono abbastanza diverse, il potere tamponante della soluzione è alto ad ogni pH.
4) Si usano i tamponi nei farmaci? Reazioni acido-base TAMPONI Considerazioni ulteriori sui tamponi (soluzioni contenenti un acido debole HA e la base coniugata A−) 4) Si usano i tamponi nei farmaci? Esempio: ingredienti tachipirina sciroppo Principio attivo: paracetamolo Eccipienti: saccarosio, sodio citrato, saccarina sodica, metile paraidrossibenzoato, potassio sorbato, Macrogol 6000, acido citrico monoidrato, aroma fragola, aroma mandarino, acqua depurata in realtà l’acido citrico è triprotico, H3Cit. Nella tachipirina sciroppo c’è quindi una miscela H3Cit + Na3Cit. Si può dimostrare (lo omettiamo) che anche questo è un tampone. Se H3Cit + Na3Cit sono presenti alla stessa concentrazione iniziale, pH = 4.3
5) Perché si usano i tamponi nei farmaci? Reazioni acido-base TAMPONI Considerazioni ulteriori sui tamponi (soluzioni contenenti un acido debole HA e la base coniugata A−) 5) Perché si usano i tamponi nei farmaci? - per fissare il pH ad un valore che stabilizzi il principio attivo e gli eccipienti; - per fissare il pH ad un valore conservante contro la degradazione batterica (da questo punto di vista il pH dovrebbe essere acido); - per fissare il pH ad un valore compatibile con la modalità di assunzione del farmaco (caso della tachipirina sciroppo, assunzione per via orale, pH = 4.3 è ottimale); L’azione del tampone diviene necessaria nel caso in cui il principio attivo, e/o altri eccipienti, avessero proprietà acido-base tali da regolare il pH a valori incompatibili con i dettami precedenti.
SOLUZIONI CONTENENTI 2 (o più) ACIDI, oppure 2 (o più) BASI Reazioni acido-base SOLUZIONI CONTENENTI 2 (o più) ACIDI, oppure 2 (o più) BASI Vi sono due situazioni tipiche, una di più semplice ed una di più complicata risoluzione. Miscele di acidi di semplice risoluzione. Se un acido della miscela è più concentrato e più forte degli altri, il pH è dato solo da lui ed il contributo degli altri può essere trascurato, dato che la presenza di H3O+ prodotto dall’acido più forte reprime la dissociazione acida dell’acido più debole (per Le Chatelier). Per esempio, il pH di una soluzione contenente HCl 0.01 M e acido acetico 0.003 M è uguale a quello di HCl 0.01 M (pH=2). Ricordare anche che soluzioni di acidi forti sono tamponi Miscele di basi di semplice risoluzione. Stesso discorso: se una base della miscela è più concentrata e più forte delle altre, il pH è dato solo da lei ed il contributo delle altre può essere trascurato.
SOLUZIONI CONTENENTI 2 (o più) ACIDI, oppure 2 (o più) BASI Reazioni acido-base SOLUZIONI CONTENENTI 2 (o più) ACIDI, oppure 2 (o più) BASI Situazione più complicata: 2 o più acidi (o due o più basi), di cui quello più debole è anche più concentrato, oppure hanno circa stessa forza e concentrazione. Qual è il pH? Per miscele di questo tipo si può ricavare il pH in maniera esatta risolvendo il sistema di equazioni. Tuttavia, i calcoli e le approssimazioni da fare non sono banali. In alternativa si può ottenere una stima del pH, basandosi su un ragionamento e su calcoli molto più semplici. Per capire il ragionamento, si consideri l’esempio della seguente miscela di due acidi deboli HX e HY: HX, CHX = 0.05 M, Ka(HX) = 10–4 HY, CHY = 0.1 M, Ka(HY) = 2·10–5
SOLUZIONI CONTENENTI 2 (o più) ACIDI Reazioni acido-base SOLUZIONI CONTENENTI 2 (o più) ACIDI HX, CHX = 0.05 M, Ka(HX) = 10–4 HY, CHY = 0.1 M, Ka(HY) = 2·10–5 Consideriamo innanzitutto quanto varrebbero [H3O+] e pH della soluzione contenente il solo acido HX 0.05 M Essendo CHX > 100·Ka(HX), vale la formula semplice [H3O+] = 2.236·10–3 M, pH = 2.65 [H3O+] = Consideriamo ora quanto varrebbero [H3O+] e pH della soluzione contenente il solo acido HY 0.1 M Essendo anche qui CHY > 100·Ka(HY), vale la formula semplice [H3O+] = 1.414·10–3 M, pH = 2.85 [H3O+] =
SOLUZIONI CONTENENTI 2 (o più) ACIDI Reazioni acido-base SOLUZIONI CONTENENTI 2 (o più) ACIDI se ci fosse solo HX, [H3O+] = 2.236·10–3 M, pH = 2.65 se ci fosse solo HY, [H3O+] = 1.414·10–3 M, pH = 2.85 E la miscela dei due acidi? La miscela deve essere più acida del più acido dei due (o al massimo può essere altrettanto acida, ma non certamente più basica). Infatti, se alla soluzione contenente il più acido dei due (HX in questo caso) aggiungiamo un altro acido, per definizione la soluzione non può basificarsi. Quindi, nella miscela di HX + HY ci aspettiamo: [H3O+] ≥ 2.236·10–3 M, pH ≤ 2.65
SOLUZIONI CONTENENTI 2 (o più) ACIDI Reazioni acido-base SOLUZIONI CONTENENTI 2 (o più) ACIDI se ci fosse solo HX, [H3O+] = 2.236·10–3 M, pH = 2.65 se ci fosse solo HY, [H3O+] = 1.414·10–3 M, pH = 2.85 Nella miscela HX + HY: [H3O+] ≥ 2.236·10–3 M, pH ≤ 2.65 Adesso l’altra parte del ragionamento. Se mescoliamo due acidi, ciascuno di loro si dissocia un po’ di meno di quanto farebbe se fosse da solo HX + H2O H3O+ + X– HY + H2O H3O+ + Y– Per Le Chatelier, la dissociazione acida di un acido debole è sfavorita dalla presenza di H3O+ proveniente dall‘altro acido.
SOLUZIONI CONTENENTI 2 (o più) ACIDI Reazioni acido-base SOLUZIONI CONTENENTI 2 (o più) ACIDI se ci fosse solo HX, [H3O+] = 2.236·10–3 M, pH = 2.65 se ci fosse solo HY, [H3O+] = 1.414·10–3 M, pH = 2.85 Quindi, [H3O+] della miscela è previsto essere minore della somma degli [H3O+] provenienti dalla dissociazione dei due acidi presi separatamente (sarebbe uguale se entrambi gli acidi fossero forti): (2.236+1.414)·10–3 M ≥ [H3O+] ≥ 2.236·10–3 M 3.650·10–3 M Stima ragionevole per [H3O+]: una via di mezzo tra i due limiti: 2.236·10–3 + 3.650·10–3 2 [H3O+] ≈ = 2.943·10–3 M pH ≈ 2.53 (se avessimo fatto il calcolo esatto, sarebbe venuto pH = 2.58. Molti meno conti per sbagliare di solo 0.05 unità di pH...)
SOLUZIONI CONTENENTI 2 (o più) ACIDI Reazioni acido-base SOLUZIONI CONTENENTI 2 (o più) ACIDI In generale, [H3O+] di una miscela di acidi può essere stimato dal valore medio tra i due limiti ottenuti dagli acidi presi separatamente: 1) valore di [H3O+] più elevato e 2) somma degli [H3O+] Esercizio: stimare il pH di una miscela di acido cloridrico (HCl) 2·10–3 M, acido ascorbico (HAs, Ka = 1.07.10−4) 8·10–2 M, ed acido acetico (HAc, Ka = 1.75.10−5) 9·10–2 M. Calcoliamo [H3O+] ed il pH degli acidi presi separatamente Per HCl da solo, [H3O+] = 2.000·10–3 M, pH = 2.70 Per HAs da solo, C > 100·Ka per cui vale la formula semplice: [H3O+] = e si ottiene: [H3O+] = 2.926·10–3 M, pH = 2.53
SOLUZIONI CONTENENTI 2 (o più) ACIDI Reazioni acido-base SOLUZIONI CONTENENTI 2 (o più) ACIDI Stimare il pH di una miscela di HCl 2·10–3 M, acido ascorbico (HAs, Ka = 1.07.10−4) 8·10–2 M, ed acido acetico (HAc, Ka = 1.75.10−5) 9·10–2 M. Per HCl da solo, [H3O+] = 2.000·10–3 M, pH = 2.70 Per HAs da solo, [H3O+] = 2.926·10–3 M, pH = 2.53 Per HAc da solo, C > 100·Ka per cui vale la formula semplice: [H3O+] = e si ottiene: [H3O+] = 1.255·10–3 M, pH = 2.90 Per la miscela, [H3O+] deve essere maggiore del più acido dei tre ([H3O+] ≥ 2.926·10–3 M), e minore della somma dei tre ([H3O+] ≤ (2.000+2.926+1.255)·10–3 M), ed in particolare è circa uguale alla metà di questi due limiti:
SOLUZIONI CONTENENTI 2 (o più) ACIDI Reazioni acido-base SOLUZIONI CONTENENTI 2 (o più) ACIDI Stimare il pH di una miscela di HCl 2·10–3 M, acido ascorbico (HAs, Ka = 1.07.10−4) 8·10–2 M, ed acido acetico (HAc, Ka = 1.75.10−5) 9·10–2 M. Per la miscela, [H3O+] deve essere maggiore del più acido dei tre ([H3O+] ≥ 2.926·10–3 M), e minore della somma dei tre ([H3O+] ≤ (2.000+2.926+1.255)·10–3 M), ed in particolare è circa uguale alla metà di questi due limiti: 2.926·10–3 + 6.181·10–3 2 [H3O+] ≈ = 4.553·10–3 M pH ≈ 2.34 (se avessimo fatto il calcolo esatto, sarebbe venuto pH = 2.37. Anche qui sono stati fatti molti meno conti ed abbiamo sbagliato di solo 0.03 unità di pH...)
SOLUZIONI CONTENENTI 2 (o più) BASI Reazioni acido-base SOLUZIONI CONTENENTI 2 (o più) BASI Analogo ragionamento vale per le miscele di più basi, ma si applica su [OH–]. Ad esempio: Stimare il pH di una miscela di NaOH 1·10–3 M ed ammoniaca (NH3, Kb = 1.75.10−5) 3·10–2 M. Calcoliamo [OH–] ed il pH delle basi prese separatamente Per NaOH da solo, [OH–] = 1.000·10–3 M, pH = 11 Per NH3 da sola, C > 100·Kb per cui vale la formula semplice: [OH–] = e si ottiene: [OH–] = 7.246·10–4 M, pH = 10.86
SOLUZIONI CONTENENTI 2 (o più) BASI Reazioni acido-base SOLUZIONI CONTENENTI 2 (o più) BASI Stimare il pH di una miscela di NaOH 1·10–3 M ed ammoniaca (NH3, Kb = 1.75.10−5) 3·10–2 M. Per NaOH da solo, [OH–] = 1.000·10–3 M, pH = 11 Per NH3 da sola, [OH–] = 7.246·10–4 M, pH = 10.86 Per la miscela, [OH–] deve essere maggiore del più basico dei due ([OH–] ≥ 1.000·10–3 M), e minore della somma dei due ([OH–] ≤ (1.000+0.7246)·10–3 M), ed in particolare è circa uguale alla metà di questi due limiti: 1.000·10–3 + 1.7246·10–3 2 [OH–] ≈ = 1.362·10–3 M pH ≈ 11.13 (se avessimo fatto il calcolo esatto, sarebbe venuto pH = 11.14. Anche qui sono stati fatti pochi conti ed abbiamo sbagliato di solo 0.01 unità di pH...)
ACIDI E BASI POLIPROTICI Reazioni acido-base ACIDI E BASI POLIPROTICI Un acido poliprotico è un acido in grado di cedere più di un protone. Una base poliprotica è una base in grado di accettare più di un protone. Per un acido diprotico generico (H2A): H2A + H2O HA– + H3O+ HA– + H2O A2– + H3O+ Vi sono tante Ka quanti sono i protoni acidi.
ACIDI E BASI POLIPROTICI Reazioni acido-base ACIDI E BASI POLIPROTICI Esempi: acido ossalico HOOC–COOH Ka1 = 5.60∙10–2, Ka2 = 5.42∙10–5 acido solforico H2SO4 Ka1 >>1, Ka2 = 1.02∙10–2 glicina H3N+-CH2-COOH Ka1 = 4.47∙10–3, Ka2 = 1.67∙10–10 (tutti gli amminoacidi sono acidi poliprotici) acido fosforico H3PO4 Ka1 = 7.11∙10–3, Ka2 = 6.32∙10–8, Ka3 = 7.1∙10–13 acido citrico Ka1 = 7.44∙10–4, Ka2 = 1.73∙10–5, Ka3 = 4.02∙10–7 acido etilendiamminotetracetico Ka1 = 1.0, Ka2 = 3.22∙10–2, Ka3 = 1.0∙10–2 Ka4 = 2.2∙10–3, Ka5 = 6.9∙10–7, Ka6 = 5.8∙10–11 è sempre: Ka1 > Ka2 > ... > Kan
ACIDI E BASI POLIPROTICI Reazioni acido-base ACIDI E BASI POLIPROTICI è sempre: Ka1 > Ka2 > ... > Kan per tre motivi: 1) consideriamo ad esempio l’amminoacido glicina nella sua forma completamente protonata: H3N+-CH2-COOH i due gruppi acidi sono diversi: il gruppo -COOH (carbossilico) è intrinsecamente più acido di -NH3+ (ammonio), per cui è ragionevole che il primo deprotoni con una costante più alta (effetto della diversa acidità dei gruppi acidi).
ACIDI E BASI POLIPROTICI Reazioni acido-base ACIDI E BASI POLIPROTICI è sempre: Ka1 > Ka2 > ... > Kan La diseguaglianza vale anche se i gruppi che deprotonano sono identici, ad esempio nell’acido solfidrico (H2S). Ci sono infatti due motivi addizionali: 2) Dopo la perdita del primo protone, rimane una molecola carica negativamente (HS−), per cui la perdita di un protone (+) è più difficile da HS− che non da H2S (effetto della carica). 3) Inoltre, è più probabile perdere 1 protone quando ce ne sono due, dunque da H2S, che non quando ce n’è uno solo, dunque da HS− (effetto statistico).
SOLUZIONI CONTENENTI UN ACIDO DIPROTICO Reazioni acido-base SOLUZIONI CONTENENTI UN ACIDO DIPROTICO Trattazione generale per soluzioni contenenti un acido poliprotico a concentrazione iniziale C: vediamo l’esempio dell’acido diprotico. I ragionamenti che faremo valgono anche per gli acidi triprotici, tetraprotici, ecc. Prima di impostare il sistema, guardiamo le due dissociazioni: H2A + H2O HA– + H3O+ HA– + H2O A2– + H3O+ La seconda reazione ha una Ka più bassa della prima, per cui è più spostata a sinistra della prima reazione. Inoltre, la seconda reazione è ancora più spostata a sinistra (di quanto lo sarebbe se non ci fosse la prima reazione), perché H3O+ prodotto dalla prima reazione sposta l’equilibrio della seconda reazione verso sinistra (Le Chatelier).
SOLUZIONI CONTENENTI UN ACIDO DIPROTICO Reazioni acido-base SOLUZIONI CONTENENTI UN ACIDO DIPROTICO H2A + H2O HA– + H3O+ HA– + H2O A2– + H3O+ Quindi, [A2−] è molto basso all’equilibrio chimico, e può molto spesso essere trascurato nei bilanci dove appare. Approssimando [A2–], stiamo approssimando la seconda dissociazione acida: Stiamo in pratica considerando l’acido diprotico come se fosse monoprotico. Se [A2−] è trascurabile, il pH per un acido diprotico è identico a quello che avrebbe un acido monoprotico con Ka = Ka1. Quindi anche le formule sono le stesse dell’acido monoprotico:
SOLUZIONI CONTENENTI UN ACIDO DIPROTICO Reazioni acido-base SOLUZIONI CONTENENTI UN ACIDO DIPROTICO [H3O+] = se C > 100·Ka1 [H3O+] = quasi sempre in tutti gli altri casi. Regoletta: [A2–], ed in genere la seconda deprotonazione, è trascurabile se (circa!) Ka1 > 100·Ka2 Se invece Ka1 < 100·Ka2, la seconda deprotonazione non è trascurabile, e si deve impostare e risolvere il sistema completo (trascurando solo [OH–]).
SOLUZIONI CONTENENTI UN ACIDO DIPROTICO Reazioni acido-base SOLUZIONI CONTENENTI UN ACIDO DIPROTICO Come conclusione sugli acidi diprotici, ancora due cose (che non dimostriamo): le formule e la regoletta non dipendono dalla carica dell’acido. Per esempio, valgono anche per gli acidi diprotici H2A+, H2A2–, ecc. i ragionamenti valgono anche per acidi poliprotici: per esempio, anche acidi triprotici (H3A), tetraprotici (H4A), ecc., possono essere trattati come un monoprotico se Ka1 > 100·Ka2
SOLUZIONI CONTENENTI UNA BASE DIPROTICA Reazioni acido-base SOLUZIONI CONTENENTI UNA BASE DIPROTICA Una base diprotica, per esempio lo ione ossalato (A2−), può sottostare a due reazioni di dissociazione basica: A2– + H2O HA– + OH– HA– + H2O H2A + OH– Si può dimostrare che Kb1 e Kb2 sono correlate alle Ka (Ka1 e Ka2) dell’acido coniugato, in questo caso H2A. Prendiamo l’espressione per Kb1, e moltiplichiamo sopra e sotto per [H3O+]:
SOLUZIONI CONTENENTI UNA BASE DIPROTICA Reazioni acido-base SOLUZIONI CONTENENTI UNA BASE DIPROTICA Poiché la Ka2 è: si ricava: Facendo la stessa operazione sulla Kb2 si ricava:
SOLUZIONI CONTENENTI UNA BASE DIPROTICA Reazioni acido-base SOLUZIONI CONTENENTI UNA BASE DIPROTICA Le formule sono generalizzabili per basi poliprotiche. Ad esempio per un sistema triprotico: Poiché Ka1 > Ka2 > ... > Kan, si ottiene: Kb1 > Kb2 > ... > Kbn
SOLUZIONI CONTENENTI UNA BASE DIPROTICA Reazioni acido-base SOLUZIONI CONTENENTI UNA BASE DIPROTICA Come calcolare il pH di una base diprotica a concentrazione C: si utilizzano considerazioni ed approssimazioni simili a quelle viste per gli acidi poliprotici: stesse formule della base monoprotica se Kb1 > 100·Kb2 [OH–] = se C > 100·Kb1 [OH–] = quasi sempre negli altri casi
SOLUZIONI CONTENENTI UN ANFOLITA Reazioni acido-base SOLUZIONI CONTENENTI UN ANFOLITA Anfolita (o anfiprotico) = composto che può sia donare che accettare un protone. Le forme intermedie di acidi o basi poliprotici sono degli anfoliti. Per esempio: glicina (HG) e altri amminoacidi, solfuro acido HS−, bicarbonato HCO3−, fosfato monoacido HPO42−, fosfato biacido H2PO4−, citrato monoacido HCit2−, citrato biacido H2Cit−, ecc. (anche l’acqua è un anfolita). Un anfolita sciolto in acqua dà quindi sia reazione di dissociazione acida che basica; per esempio la glicina (HG): HG + H2O H2G+ + OH– HG + H2O G– + H3O+ La glicina propriamente detta è neutra e monoprotonata, ed è un anfolita. La forma con 2 protoni ha carica +1, la forma con zero protoni −1 le costanti delle due reazioni sono rispettivamente Kb2 e Ka2
SOLUZIONI CONTENENTI UN ANFOLITA (sistema diprotico) Reazioni acido-base SOLUZIONI CONTENENTI UN ANFOLITA (sistema diprotico) Reazioni che avvengono in soluzione: 2 H2O H3O+ + OH– incognite: [H3O+], [OH–], [H2G+], [HG], [G–] HG + H2O H2G+ + OH– sono necessarie 5 equazioni HG + H2O G– + H3O+ [H3O+] [OH–] = 10–14 è lo stesso quali K si mettono, purché siano due ed indipendenti. Di solito si mettono Ka1 e Ka2 [H3O+] + [H2G+] = [OH–] + [G–] bilancio di carica C = [H2G+] + [HG] + [G–] bilancio di massa glicina
SOLUZIONI CONTENENTI UN ANFOLITA (sistema diprotico) Reazioni acido-base SOLUZIONI CONTENENTI UN ANFOLITA (sistema diprotico) Scelta delle approssimazioni HG + H2O H2G+ + OH– HG + H2O G– + H3O+ Le costanti delle due reazioni sono Kb2 e Ka2, che (di solito) sono entrambe molto piccole, e quindi le reazioni sono molto spostate a sinistra. Di conseguenza, la produzione di H2G+ e G− è minima, e la loro concentrazione all’equilibrio chimico può molto probabilmente essere trascurata rispetto a quella di HG nel bilancio di massa CHG = [H2G+] + [HG] + [G–] La produzione di H3O+ e OH− è ancora minore, poiché quei pochi che si producono tendono a neutralizzarsi tra loro. Quindi, la loro concentrazione all’equilibrio chimico può talvolta essere trascurata rispetto a quella di H2G+ e G– nel bilancio di carica:
SOLUZIONI CONTENENTI UN ANFOLITA (sistema diprotico) Reazioni acido-base SOLUZIONI CONTENENTI UN ANFOLITA (sistema diprotico) [H3O+] + [H2G+] = [OH–] + [G–] Risolvendo il sistema si ricava un’equazione molto semplice per il calcolo del pH di un anfolita: